ABO Blood Groups Modulate Oxidative Stress in Hemodialysis Patients
DOI:
https://doi.org/10.51699/cajotas.v7i1.1642Keywords:
ABO blood group, oxidative stress, malondialdehyde, inflammation, end-stage renal diseaseAbstract
End stage renal disease (ESRD) , oxidative stress and persistent inflammation are factors that lead to cardiovascular morbidity. ABO blood group phenotypes affect inflammatory and thrombotic pathways, it is unknown how they relate to oxidative biomarkers in hemodialysis (HD). To compare inflammatory and oxidative stress indicators in maintenance HD patients with various ABO genotypes . At Kirkuk General Hospital in Iraq , 230 maintenance HD patients more than 6 months dialysis, ages 22–70) and 70 matched healthy controls participated in this cross-sectional study between April and November 2023. Validated techniques were used to evaluate serum levels of MDA, reduced glutathione (GSH), catalase activity, high sensitivity C-reactive protein (hs -CRP), interleukin- 6 (IL-6), and tumor necrosis factor-alpha (TNF-α). ANOVA with Bonferroni correction and multiple linear regression with adjustments for age, sex, dialysis vintage, Kt/V, hemoglobin, albumin, and comorbidities were among the statistical analyses. Compared to group O (n= 92), non O phenotypes (A, B, AB; n= 138) exhibited substantially reduced GSH (5.05±1.40 vs. 5.84±1.25 µmol/mL, p= 0.001, d= 0.59), hs-CRP (6.73±2.76 vs. 5.02±2.34 mg/L, p=0.001, d=0.67), and MDA (3.57±0.80 vs. 2.94±0.65 nmol/mL, p<0.001, Cohen’s d=0.87). The non-O phenotype independently predicted lower GSH (β=−0.64, 95%CI −1.08 to −0.20, p=0.005) and higher MDA (β=0.58, 95%CI 0.32–0.84, p<0.001) after multivariate adjustment. MDA showed a correlation with both IL-6 (r=0.24, p=0.011) and hs-CRP (r=0.28, p=0.003). Oxidative stress in HD patients is independently modulated by ABO blood types; non-O phenotypes show 21% greater lipid peroxidation. In ESRD , ABO type may improve cardiovascular risk assessment. It is necessary to do prospective research relating ABO oxidative characteristics to clinical outcomes.
Downloads
References
B. Bikbov, C. A. Purcell, A. S. Levey et al., “Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017,” Lancet, vol. 395, no. 10225, pp. 709–733, 2020, doi: 10.1016/S0140-6736(20)30045-3.
J. Himmelfarb and T. A. Ikizler, “Hemodialysis,” N. Engl. J. Med., vol. 363, no. 19, pp. 1833–1845, 2010, doi: 10.1056/NEJMra0902710.
P. Stenvinkel, J. J. Carrero, J. Axelsson et al., “Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient,” Clin. J. Am. Soc. Nephrol., vol. 3, no. 2, pp. 505–521, 2008, doi: 10.2215/CJN.03670807.
E. Dounousi, E. Papavasiliou, A. Makedou et al., “Oxidative stress is progressively enhanced with advancing stages of CKD,” Am. J. Kidney Dis., vol. 48, no. 5, pp. 752–760, 2006, doi: 10.1053/j.ajkd.2006.08.015.
N. D. Vaziri, “Oxidative stress in uremia: Nature, mechanisms, and potential consequences,” Semin. Nephrol., vol. 24, no. 5, pp. 469–473, 2004, doi: 10.1016/j.semnephrol.2004.06.026.
M. A. Kamel, N. M. El-Lakkany, G. M. Alghazaly et al., “Oxidative stress markers as predictors of cardiovascular morbidity in chronic hemodialysis patients,” Clin. Biochem., vol. 49, no. 16–17, pp. 1232–1238, 2016, doi: 10.1016/j.clinbiochem.2016.07.009.
P. S. Tucker, A. T. Scanlan, and V. J. Dalbo, “Chronic kidney disease influences multiple systems,” Oxid. Med. Cell. Longev., vol. 2015, Art. no. 806358, 2015, doi: 10.1155/2015/806358.
V. Liakopoulos, S. Roumeliotis, X. Gorny et al., “Oxidative stress in hemodialysis patients: A review,” Oxid. Med. Cell. Longev., vol. 2017, Art. no. 3081856, 2017, doi: 10.1155/2017/3081856.
J. J. Carrero and P. Stenvinkel, “Inflammation in end-stage renal disease,” Semin. Dial., vol. 23, no. 5, pp. 498–509, 2010, doi: 10.1111/j.1525-139X.2010.00784.x.
J. Bazeley, B. Bieber, Y. Li et al., “C-reactive protein and prediction of 1-year mortality in prevalent hemodialysis patients,” Clin. J. Am. Soc. Nephrol., vol. 6, no. 10, pp. 2452–2461, 2011, doi: 10.2215/CJN.00710111.
H. Honda, A. R. Qureshi, O. Heimbürger et al., “Serum albumin, C-reactive protein, interleukin-6, and fetuin-A as predictors of outcomes in ESRD,” Am. J. Kidney Dis., vol. 47, no. 1, pp. 139–148, 2006, doi: 10.1053/j.ajkd.2005.09.014.
U. Förstermann, N. Xia, and H. Li, “Roles of vascular oxidative stress and nitric oxide,” Circ. Res., vol. 120, no. 4, pp. 713–735, 2017, doi: 10.1161/CIRCRESAHA.116.309326.
M. Franchini and G. M. Liumbruno, “ABO blood group: Old dogma, new perspectives,” Clin. Chem. Lab. Med., vol. 51, no. 8, pp. 1545–1553, 2013, doi: 10.1515/cclm-2013-0168.
M. P. Loscertales, S. Owens, J. O’Donnell et al., “ABO blood group and malaria,” Parasitol. Today, vol. 16, no. 11, p. 451, 2000, doi: 10.1016/S0169-4758(00)01744-5.
J. O’Donnell and M. A. Laffan, “ABO blood group, factor VIII and von Willebrand factor,” Transfus. Med., vol. 11, no. 4, pp. 343–351, 2001, doi: 10.1046/j.1365-3148.2001.00315.x.
P. V. Jenkins and J. S. O’Donnell, “ABO blood group determines plasma von Willebrand factor levels,” Transfusion, vol. 46, no. 10, pp. 1836–1844, 2006, doi: 10.1111/j.1537-2995.2006.00975.x.
A. D. Paterson, M. F. Lopes-Virella, D. Waggott et al., “ABO blood group locus and soluble E-selectin,” Arterioscler. Thromb. Vasc. Biol., vol. 29, no. 11, pp. 1958–1967, 2009, doi: 10.1161/ATVBAHA.109.192971.
M. Barbalic, J. Dupuis, A. Dehghan et al., “Genomic studies reveal ABO role in adhesion molecules,” Hum. Mol. Genet., vol. 19, no. 9, pp. 1863–1872, 2010, doi: 10.1093/hmg/ddq061.
M. He, B. Wolpin, K. Rexrode et al., “ABO blood group and coronary heart disease risk,” Arterioscler. Thromb. Vasc. Biol., vol. 32, no. 9, pp. 2314–2320, 2012, doi: 10.1161/ATVBAHA.112.248757.
S. K. Vasan, K. Rostgaard, A. Majeed et al., “ABO blood group and thromboembolic disease,” Circulation, vol. 133, no. 15, pp. 1449–1457, 2016, doi: 10.1161/CIRCULATIONAHA.115.017563.
M. Franchini, F. Capra, G. Targher et al., “ABO blood group and von Willebrand factor,” Thromb. J., vol. 5, p. 14, 2007, doi: 10.1186/1477-9560-5-14.
O. Wu, N. Bayoumi, M. A. Vickers et al., “ABO(H) blood groups and vascular disease,” J. Thromb. Haemost., vol. 6, no. 1, pp. 62–69, 2008, doi: 10.1111/j.1538-7836.2007.02818.x.
E. Mercier, J. M. Lam, S. N. Morin et al., “ABO blood group and cardiovascular events,” J. Vasc. Surg., vol. 70, no. 2, pp. 503–509, 2019, doi: 10.1016/j.jvs.2018.10.123.
P. N. Alpoim, L. C. Godoi, L. G. Freitas et al., “ABO blood groups and oxidative stress,” Blood Cells Mol. Dis., vol. 58, pp. 52–55, 2016, doi: 10.1016/j.bcmd.2016.02.003.
X. Liang, Y. Zhang, S. Wu et al., “ABO blood groups and chronic kidney disease,” Clin. Exp. Nephrol., vol. 24, no. 2, pp. 111–120, 2020, doi: 10.1007/s10157-019-01788-y.
N. Al-Allawi, A. Al-Doski, A. A. Eissa et al., “ABO and Rh(D) phenotypes in Kurdish population,” Transfus. Med. Hemother., vol. 40, no. 3, pp. 182–186, 2013, doi: 10.1159/000351196.
H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides by TBA reaction,” Anal. Biochem., vol. 95, no. 2, pp. 351–358, 1979, doi: 10.1016/0003-2697(79)90738-3.
E. Beutler, O. Duron, and B. M. Kelly, “Improved method for blood glutathione,” J. Lab. Clin. Med., vol. 61, pp. 882–888, 1963.
H. Aebi, “Catalase in vitro,” Methods Enzymol., vol. 105, pp. 121–126, 1984, doi: 10.1016/S0076-6879(84)05016-3.
G. L. Ellman, “Tissue sulfhydryl groups,” Arch. Biochem. Biophys., vol. 82, no. 1, pp. 70–77, 1959, doi: 10.1016/0003-9861(59)90090-6.
D. C. Tarng, T. P. Huang, Y. H. Wei et al., “8-Hydroxy-2′-deoxyguanosine in hemodialysis patients,” Am. J. Kidney Dis., vol. 36, no. 5, pp. 934–944, 2000, doi: 10.1053/ajkd.2000.19086.
B. P. Oberg, E. McMenamin, F. L. Lucas et al., “Oxidant stress and inflammation in CKD,” Kidney Int., vol. 65, no. 3, pp. 1009–1016, 2004, doi: 10.1111/j.1523-1755.2004.00465.x.
P. Goycheva, K. Petkova-Parlapanska, E. Georgieva et al., “Oxidative stress biomarkers in diabetic nephropathy,” Int. J. Mol. Sci., vol. 24, no. 17, Art. no. 13541, 2023, doi: 10.3390/ijms241713541.
M. B. Cook, M. J. Barnett, C. H. Bock et al., “ABO and Duffy blood types and cytokines,” Genes Immun., vol. 22, no. 3, pp. 161–171, 2021, doi: 10.1038/s41435-021-00137-5.
Q. Jin, T. Liu, Y. Qiao et al., “Oxidative stress in diabetic nephropathy,” Front. Immunol., vol. 14, Art. no. 1185317, 2023, doi: 10.3389/fimmu.2023.1185317.
F. Gragnano, S. Sperlongano, E. Golia et al., “von Willebrand factor in vascular inflammation,” Mediators Inflamm., vol. 2017, Art. no. 5620314, 2017, doi: 10.1155/2017/5620314.
B. Petri, A. Broermann, H. Li et al., “von Willebrand factor promotes leukocyte extravasation,” Blood, vol. 116, no. 22, pp. 4712–4719, 2010, doi: 10.1182/blood-2010-03-276311.
S. Reitsma, D. W. Slaaf, H. Vink et al., “The endothelial glycocalyx,” Pflugers Arch., vol. 454, no. 3, pp. 345–359, 2007, doi: 10.1007/s00424-007-0212-8.
C. Terao, Y. Momozawa, K. Ishigaki et al., “GWAS of mosaic loss of chromosome Y,” Nat. Commun., vol. 10, no. 1, p. 4719, 2019, doi: 10.1038/s41467-019-12705-7.
W. Koenig, N. Khuseyinova, A. Hoffmeister et al., “High-sensitivity CRP and mortality,” Clin. Chem., vol. 54, no. 2, pp. 335–342, 2008, doi: 10.1373/clinchem.2007.100271.
M. Yildirim, S. B. Acikgoz, A. B. Genc et al., “Inflammatory biomarkers in dialysis patients,” Rev. Assoc. Med. Bras., vol. 67, no. 5, pp. 718–723, 2021, doi: 10.1590/1806-9282.20210056.
M. Tepel, M. van der Giet, M. Statz et al., “Acetylcysteine reduces cardiovascular events,” Circulation, vol. 107, no. 7, pp. 992–995, 2003, doi: 10.1161/01.CIR.0000050628.11305.30



