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Abstract: This paper introduces a new type of high order finite element method for numerically 

solving NLSEs in complex domains. NLSEs play a central role in the modelling of wave phenomena 

in optics, quantum mechanics, and fluid dynamics, however, finding their solution in geometrically 

complex domains is still a challenge due to nonlinearities and boundary complexities. The 

framework that is proposed is basing on high-order finite element discretization on unstructured 

meshes, which makes it possible to appropriately and flexibly compute with complex geometries. 

Key aspects are weak formulation with adaptation time integration, strong treatment of terms with 

nonlinearity by Newton-type iterations, and assignment of various other boundary conditions. 

Numerical experiments show high order convergence rates, conservation properties and better 

performance than low order methods. In order to validate the efficiency and accuracy of the 

framework, the soliton propagation, vortex dynamics and domains with irregular shapes are used 

as the benchmarks. This work leads to the development of numerical methods for NLSEs 

uncombining geometric flexibility and high accuracy which may provide a means for simulation in 

photonic devices, Bose-Einstein condensates, and other applications. 

Keywords: Nonlinear Schrödinger equation; High-order finite element method; Complex domains; 

Numerical simulation; Spectral element method 

1. Introduction 

The nonlinear Schrodinger equation (NLSE) is a cornerstone model to describe the 

evolution of complex wave fields in which the delicate balance of vastly different effects 

is between dispersive effects and nonlinear effects. This universal equation, usually 

formulated in its canonical form iψ_t+∇^2 ψ+∣ψ∣^2 ψ=0,  describes a dizzying variety of 

physical phenomena, ranging from the propagation of optical pulses in 

telecommunication fibers, to the dynamics of Bose-Einstein condenses, to the behaviour 

of deep-water waves, and to plasma dynamics. Its importance in a variety of fields of both 

physics and engineering requires robust, accurate, and flexible numerical solvers, which 

need to be able to capture complex dynamics such as the formation of solitons, wave 

collapse and vortex dynamics. 

 The ability to accurately simulate these types of behavior in a realistic environment 

can be severely limited by the complexity of the shapes of the objects. As practical 

applications generally involve geometries that are much more irregular in shapes (i.e. 

Photonic Crystal Fibers, Micro-Structured Optical Devices) and geometries that vary over 

time (i.e. Trapped Condensates, with arbitrarily-shaped potentials), the reliance of 

traditional numerical approaches (e.g. finite difference and pseudo-spectral methods) on 

structured grids means that approximating the curvature of the geometries will lead to 
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inaccurate results and inefficiency in calculations due to the difficulty of creating and 

maintaining such an approximation. Low-order finite element methods (FEM) offer the 

advantage of the ability to be flexible with respect to the geometry of the object using 

unstructured mesh. However, the low-order nature of FEM results in excessive numerical 

diffusion and dispersion and thus the need for unnecessarily fine mesh grids to achieve 

the accuracy necessary for wave-dominated problems. In contrast, although they offer 

high accuracy on simple geometries with little flexibility, development efforts are 

underway to provide more flexibility for high-accuracy spectral schemes. The spectral 

element techniques described by Henning and Jarlebring show high rates of convergence; 

however, the primary focus of this technique is on simple regular geometries [1]. 

Likewise, Ge et al.'s isogeometric analysis formula is good at providing geometric 

accuracy, but typically results in high computational costs with nonlinearities that are 

explicit time-dependent [2]. Instead, although there have been several studies on adaptive 

time-step methods to increase performance for stiff problems (specifically those of Sabdin 

et al, adaptive time-step methods utilizing high-order spatial discretizations in 

conjunction with complex mesh types for the nonlinear Schrödinger equation have not 

yet been adequately investigated [3]. Therefore, challenges remain in how best to 

incorporate and treat nonlinear phenomena using high-order FEMs so that conservation 

of mass and energy will occur. This issue remains a significant challenge, as highlighted 

by the work of Ahmed et al, who reviewed numerous nonlinear wave solvers and 

compared their results [4]. 

Our main aim is to offer a complete high-order finite element approach to nonlinear 

Schrodinger equations within complicated domains and use the combination of 

unstructured mesh-based FEM's ability to utilise complex geometric shapes along with 

the spectral accuracy of high-order polynomial basis functions to develop a new and 

generalised computational method. This new finite element framework consists of a 

continuous Galerkin discretisation that uses Lagrange polynomials of any degree that can 

take into consideration complex boundaries. Diagonally implicit Runge-Kutta for time 

integration is utilised for maintaining stability and robust Newton-like iterations are used 

for the nonlinear solver for efficient convergence. In summary, this paper is primarily 

focused on making three contributions to the field of computational fluid dynamics 

through its design of a novel high-order finite element framework. This paper details our 

efforts to create and deploy a high-performance numerical method to tackle numerous 

real world engineering problems more effectively than traditional means. Our three 

primary goals were: first, to create a unified high-order finite element (FEM) formulation 

that will combine the flexibility of geometry with rapid exponential convergence (e.g., for 

smooth solution); second, to develop efficient time-stepping and nonlinear solvers 

specifically for this high-order FEM framework while ensuring that key conservation laws 

are adhered to and always satisfied most accurately; third, to develop a complete set of 

numerical validations that will support rigorous testing of this formulation in a variety of 

ways, including: demonstrating how the method works on canonical problems with 

respect to convergence rates, demonstrating how well the method scales (higher 

resolutions); and demonstrating how well it applies to “nontrivial” geometries through 

the analyses of actual complex geometries using the benchmark data available in the 

literature. The capabilities of this framework to accurately capture the physics associated 

with geometries with re-entrant corners and holes will be specifically highlighted due to 

the similarity in the geometric challenges encountered by Berrone et al for elliptic 

problems [5]. The rest of the paper is organized as follows. In Section 2, we provide an 

extensive review of the literature and placement of our work in the current numerical 

environment. In Section 3, we provide the complete mathematical and computational 

framework for the solution; in Section 4, we provide results (quantitative validation); in 

Section 5, we provide a discussion of the interpretation of our results and their 

implications; and in Section 6, we provide a summary and recommendations for future 

research. 
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Literature Review 

The solution of the Nonlinear Schrödinger Equation (NLSE) numerically has been 

researched widely with a plethora of methods, each with different strengths and 

weaknesses. The split-step Fourier method (SSFM) is still widely used because of its 

effectiveness and its exact treatment of dispersion for a simple periodic domain. 

Optimizations recently completed by Bönsel on SSFM for optical pulse propagation and 

the finite-difference time-domain (FDTD) method have also shown how easily these two 

methods can be implemented and improved upon through a better understanding of how 

they simulate the behaviour of bosons and Bose-Einstein condensates [6]. However, both 

SSFM and FDTD are limited due to the requirement that they use regular structured 

Cartesian grids, which makes it difficult to simulate the behaviour of bosons accurately in 

complex irregular geometries where the accuracy of the simulations depends on how well 

the grid conforms to the geometry. Pure spectral methods provide a very accurate means 

of simulating exactly smooth solutions, but they, too, are limited in that they can only be 

used to simulate solutions with a specific regular boundary. The finite element method 

(FEM) provides a natural and easy way to work with irregular geometries by providing a 

method to create unstructured or non-regular meshes. Early and continued applications 

of FEM to the NLSE have largely utilized low-order linear or quadratic elements, as in the 

conservative schemes analyzed by Tang et al for modeling condensates in traps [7]. While 

successful in capturing basic dynamics, these low-order formulations are plagued by 

significant numerical dispersion and diffusion errors, necessitating extremely fine meshes 

to achieve acceptable accuracy for wave-dominated problems—a computationally 

prohibitive requirement for long-time simulations or three-dimensional studies, a point 

critically emphasized by Esen et al [8]. 

High-order numerical methods are the focus of many researchers due to the accuracy 

limitations associated with traditional lower-order numerical methods. High-order 

techniques include high-order finite element methods, such as the spectral element 

method (SEM), the hp-FEM method, and the discontinuous Galerkin (dG) method.  Due 

to their ability to achieve exponential convergence for smooth solutions and to be well-

suited for complex geometries, researchers have extensively studied these methods in the 

context of solving PDEs using computational methods.  An outstanding example of the 

effectiveness of combining geometric methods with high-order approximations is found 

in the work of Berrone et al. in which an hp-adaptive framework is used to solve elliptic 

problems posed on polygonal domains [5].  The suitability of using dG methods as a basis 

for models that can take advantage of both the characteristics of parallelism and 

conservation also leads to a multitude of different applications. For example, dG methods 

are used by Gu to model KdV-type systems [9], which are commonly known as nonlinear 

and thus a challenge for the development of numerical methods to solve PDEs. Even 

though dG has proven to be a reliable method for the solution of a number of classes of 

PDEs, there has been a noticeable lack of work dedicated to the translation of these 

advantages to the unique challenges posed by the nonlinear Schrodinger equation 

(NLSE). One exception to such a paucity of studies related to the NLSE is the very recent 

development of a spectral element method to solve the Gross-Pitaevskii equation (GPE) 

by Henning-Jarlebring [1]. However, their work primarily concentrates on the GPE solved 

over the typical configuration of standard domains. The study conducted by Ge et al. 

(2023) shows that isogeometric analysis (IGA) has advantages, such as connecting with a 

CAD model directly as well as utilizing high order B-Spline Basis Functions, providing 

greater geometric fidelity. The authors also note that the increased computational 

complexity and cost of evaluating nonlinear terms in explicit time-dependent problems 

make IGA challenging. Parallel approaches to solving such types of problems on complex 

domains typically rely on Non-overlapping Domain Decomposition Methods (NDM), 

such as the Schwarz algorithm proposed by Gander et al for Semi-linear problems, to 

enable the use of higher order discretization methods in subdomains. However, NDMs 

face challenges in achieving efficient transmission conditions while maintaining global 

conservation [10]. Another approach to improving the efficiency of solving NLSEs in 

complex geometries is through Mesh Adaptation Techniques driven by A Posteriori Error 
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Estimators. While the r-adaptive moving mesh technique proposed by Aballay et al., 

(2025) may provide efficiency improvements, its application is usually limited to 

smoothly deforming meshes and can create difficulties in preserving high order accuracy. 

This paper, through its extensive literature review and analysis, identifies a gap in 

current research regarding the finite element analysis (FEA) of Nonlinear Schrödinger 

Equations (NLSE). Current FEA methodologies do not provide an integrated, higher-

order finite element framework that addresses the three principal issues associated with 

NLSEs: the geometric complexity (i.e., domains having re-entrant corners, holes and other 

complex-shaped boundaries), the development of high-order spatial discretizations (far 

exceeding second-order) efficiently implemented, and the correct and robust treatment of 

the nonlinear term in an implicit time-stepping circumstances (the method most widely 

accepted for studying the NLSE). Most of the high-order FEA approaches developed to 

date (including the isogeometric analysis [IGA] approach developed by Ge et al. for the 

NLSE) have emphasised perfect geometric representation through fine discretizations and 

applied less focus on developing the high-efficiency solver computing environment 

required to execute high-efficiency nonlinear solvers [2]. In contrast, the solver-efficiency-

driven work developed by Lovisetto et al. (2024) using operator-integrated factor splitting 

for FEA has sacrificed either geometric complexity or the development of high-order 

accuracies. Finally, many of the currently published references that describe conservation 

properties (mass and energy) in relation to high-order, geometrically complex finite 

element analysis for the NLSE often do not explicitly state the conservation properties, 

but rather treat conservation as a secondary design consideration (e.g., Ahmed et al. 

(2024)). McLachlan and Stern's findings on multi-symplectic integrators for solving multi-

dimensional systems of ordinary differential equations (ODEs) on unstructured grids 

offer a strong theoretical base [11], but do not have a general design or implementation 

for use in the real world. In addition, Farag and colleagues have completed an extensive 

benchmark study of various NLSE solvers that vividly demonstrates how different 

methods can perform well (i.e., provide accurate solutions) in one area (e.g., accuracy on 

simple domains) while exhibiting poor performance elsewhere (e.g., accuracy on complex 

domains), particularly when both nonlinearity and the complexity of the domain exist. A 

single framework that integrates these two areas of research would be beneficial [12]. 

The current paper is positioned in this setting. The proposed and validated 

comprehensive high-order continuous Galerkin Finite Element Framework develops a 

solution to the identified gap in the literature for the numerical simulation of the nonlinear 

Schrödinger equation (NLSE) for nonlinear wave systems in more complex geometries. 

The new framework incorporates knowledge gained from a number of previously 

developed finite element methods, such as the geometric flexibility provided by the use 

of irregular meshes, as is common in standard finite element method, and the adoption of 

both high order (p-refinement) and adaptive (hp-refinement) strategies advocated by 

Berrone et al.; and to create robust and efficient computational methods using either 

implicit time integration techniques or Newton-type nonlinear solvers that focus on 

maintaining discrete conservation laws as outlined by Ahmed and others. This research 

unifies the three elements of geometric flexibility, spectral-like accuracy and the 

robustness of the nonlinear solvers into a comprehensive tested computational tool, which 

represents a substantial improvement beyond the current methods and is capable of 

modeling high-fidelity nonlinear wave behaviour in realistic geometric environments that 

were previously computationally intensive or infeasible to model. 

 

2. Materials and Methods 

The development of a robust, high-order finite element framework for solving the 

Nonlinear Schrödinger Equation (NLSE) in complex domains requires a meticulously 

structured numerical methodology. The formulation of a solid and complex domain finite 

element model for the solvability of the Nonlinear Schrodinger Equation (NLSE) needs an 

extreme attention to numerical methodology. The approach combines the advanced 

spatial discretization with stable temporal integration, the efficient nonlinear solvers and 

rigorous validation protocols. The following sections describe each of the components of 
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this methodology to natural detail creating a complete and reproducible computational 

pipeline. 

Mathematical Model and Governing Equations 

The Nonlinear Schrodinger Equation presented in this note as a dimensionless, 

generalized equation is the central topic of this presentation. To cover the broad spectrum 

of biomedical and physical applications (that start with the propagation of light in a turbid 

biological tissue and reach the dynamics of Bose-Einstein condensates in patterned traps) 

we consider the form with an external potential: 

𝑖
∂𝜓(𝐱, 𝑡)

∂𝑡
= −∇2𝜓(𝐱, 𝑡) + 𝑉(𝐱)𝜓(𝐱, 𝑡) + 𝛽 ∣ 𝜓(𝐱, 𝑡) ∣𝜎 𝜓(𝐱, 𝑡), 𝐱 ∈ Ω,  𝑡 ∈ (0, 𝑇], (1) 

 

where 𝜓(𝐱, 𝑡) is the complex-valued wave function, V(x) is a real-valued external 

potential (e.g., an optical trap or tissue scattering profile) and 𝛽 controls the strength of 

the nonlinearity. The exponent sis usually 2 for cubic nonlinearities, but is left for 

generality. The domain Ω ⊂ ℝ𝑑(𝑑 = 2,3) is assumed to be geometrically complex, possibly 

with re-entrant corners, internal impediments or complicated boundaries that are derived 

from medical imaging data. 

The system is closed with the following initial condition and some appropriate 

boundary conditions: 
𝜓(𝐱, 0) = 𝜓0(𝐱)in Ω, (2) 
ℬ(𝜓) = 0on ∂Ω. (3) 

 

The boundary operator ℬcan represent homogeneous Dirichlet (𝜓 = 0), Neumann 

(∇𝜓 ⋅ 𝐧 = 0), periodic, or absorbing boundary conditions. For the problems of emulation 

of open systems, for example the scattering of waves in biological medium, a perfectly 

matched layer (PML) technique is implemented by modifying the potential term V(x)in a 

surrounding absorbing region [13] 

Spatial Discretization via High-Order Finite Elements 

Mesh Generation and High-Order Basis Functions 

The complex domain Ωis discretized by conforming mesh 𝒯ℎ which is composed of 𝑁𝑒 

non-overlapping elements 𝐾. For the highest possible level of geometric freedom, we 

mainly use unstructured triangular (2D) or tetrahedron (3D) elements, using software 

such as Gmsh [14]. To obtain high-order accuracy, we use a continuous Galerkin 

formulation of using Lagrange polynomial basis functions of degree p≥3on these 

elements. The finite dimensional solution space is: 

𝑉ℎ
𝑝

= {𝑣ℎ ∈ 𝐶0(Ω) ∩ 𝐻1(Ω): 𝑣ℎ ∣𝐾∈ 𝒫𝑝(𝐾)  ∀𝐾 ∈ 𝒯ℎ}, (4) 

 

where 𝒫𝑝(𝐾)is the space of polynomials of total degree ≤ 𝑝on element 𝐾. The 

approximate solution 𝜓ℎ(𝐱, 𝑡) ∈ 𝑉ℎ
𝑝is expressed as: 

𝜓ℎ(𝐱, 𝑡) = ∑ Ψ𝑗

𝑁𝑑

𝑗=1

(𝑡)𝜙𝑗(𝐱), (5) 

 

where {𝜙𝑗}𝑗=1
𝑁𝑑 are the global basis functions, Ψ𝑗(𝑡)are the time-dependent nodal 

coefficients, and 𝑁𝑑is the total number of degrees of freedom. 

Weak Formulation and Matrix Assembly 

The weak form of Eq. (1) is obtained by multiplying by a test function 𝑣ℎ ∈ 𝑉ℎ
𝑝, 

integrating over Ω, and applying integration by parts for the Laplacian term: 

𝑖 ∫
∂𝜓ℎ

∂𝑡Ω

𝑣ℎ  𝑑𝐱 = ∫ ∇
Ω

𝜓ℎ ⋅ ∇𝑣ℎ  𝑑𝐱 + ∫ (𝑉(𝐱) + 𝛽 ∣ 𝜓ℎ ∣𝜎)
Ω

𝜓ℎ𝑣ℎ 𝑑𝐱 − ∫ (∇
∂Ω

𝜓ℎ ⋅ 𝐧)𝑣ℎ  𝑑𝑠. (6) 

 

For Dirichlet boundaries, the surface integral vanishes. Substituting Eq. (5) into Eq. 

(6) yields the semi-discrete matrix system: 
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𝑖𝐌
𝑑𝚿

𝑑𝑡
= (𝐒 + 𝐕 + 𝐍(𝚿))𝚿, (7) 

 

where 𝚿(𝑡) = [Ψ1(𝑡), … , Ψ𝑁𝑑
(𝑡)]𝑇and: 

• Mass matrix: 𝑀𝑖𝑗 = ∫ 𝜙𝑖Ω
𝜙𝑗 𝑑𝐱 

• Stiffness matrix: 𝑆𝑖𝑗 = ∫ ∇
Ω

𝜙𝑖 ⋅ ∇𝜙𝑗 𝑑𝐱 

• Potential matrix: 𝑉𝑖𝑗 = ∫ 𝑉(𝐱)
Ω

𝜙𝑖𝜙𝑗 𝑑𝐱 

• Nonlinear matrix: 𝑁(𝚿)𝑖𝑗arises from the term ∫ 𝛽 ∣
Ω

𝜓ℎ ∣𝜎 𝜙𝑖𝜙𝑗  𝑑𝐱and 

depends on the solution 𝚿. 

Efficient and accurate assembly of these matrices is critical. We use high-order 

Gaussian quadrature rules with a sufficient number of points (𝑛𝑞 ∝ 𝑝𝑑) to ensure 

integration errors are negligible compared to discretization errors. The assembly is 

performed element-wise, leveraging the local-to-global mapping and pre-computed 

values of basis functions and their derivatives on a reference element, as detailed in the 

high-order spectral element literature [15]. 

 

Table 1. Characteristics of High-Order Elements and Quadrature Rules 

Element 

Type 

Basis 

Polynomial 

(Degree p) 

Typical 

Quadrature 

Rule 

Integration 

Points per 

Element 

Primary Application 

Triangle Lagrange 

(Complete 

polynomial) 

Dunavant rules ≈ (𝑝 + 1)(𝑝
+ 2)/2 

Highly irregular, 

biological domains 

(e.g., tissue sections). 

Quadrilateral Tensor-product 

Lagrange 

Gauss-

Legendre 

product rule 

(𝑝+1)𝑑 Regions amenable to 

mapping (e.g., vessels, 

structured 

subdomains). 

Tetrahedron Lagrange 

(Complete 

polynomial) 

Keast rules ∝ 𝑝3 Complex 3D 

anatomical volumes 

(e.g., organ 

geometries). 

 

The choice of element type and quadrature rule is a trade-off between geometric 

flexibility and computational efficiency. Triangular/tetrahedral elements provide 

unmatched adaptability for meshing convoluted biological shapes obtained from 

imaging. Quadrilateral/hexahedral elements offer superior efficiency due to tensor-

product structures, enabling techniques like sum factorization which reduce operation 

counts from 𝑂(𝑝2𝑑)to 𝑂(𝑑𝑝𝑑+1). The quadrature rules are selected to be exact for the 

polynomial integrands encountered in the linear matrices, and are of higher order for the 

nonlinear term to handle the increased polynomial degree of ∣ 𝜓ℎ ∣𝜎 𝜓ℎ. 

Temporal Integration and Nonlinear Treatment 

Implicit Time-Stepping Scheme 

The semi-discrete system (Eq. 7) is a nonlinear system of ordinary differential 

equations. For stability, especially with the stiff nature of the high-order spatial operator, 

we employ an implicit time-marching scheme. A diagonally implicit Runge-Kutta (DIRK) 

method of order 4 with an embedded 3rd-order estimator is chosen [16]. This scheme 

provides high accuracy, L-stability (damping high-frequency spurious modes), and 

enables adaptive time-stepping. 

Let 𝚿𝑛 ≈ 𝚿(𝑡𝑛). One step from 𝑡𝑛to 𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡with an s-stage DIRK method 

involves solving for the stage vectors 𝐊𝑚: 

𝐊𝑚 = 𝐌−1(𝐒+𝐕+𝐍(𝚿𝑛+Δ𝑡 ∑ 𝑎𝑚𝑙
𝑚
𝑙=1 𝐊𝑙))(𝚿𝑛+Δ𝑡 ∑ 𝑎𝑚𝑙

𝑚
𝑙=1 𝐊𝑙), 𝑚 = 1, … , 𝑠, (8) 
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where 𝑎𝑚𝑙are the Butcher tableau coefficients. The solution is then updated: 

𝚿𝑛+1 = 𝚿𝑛 + Δ𝑡 ∑ 𝑏𝑚

𝑠

𝑚=1

𝐊𝑚. (9) 

 

The embedded formula provides an error estimate 𝐞for adaptive time-step control: 

Δ𝑡𝑛𝑒𝑤 = Δ𝑡𝑜𝑙𝑑 ⋅ 𝜅 ⋅ (𝜏/∥ 𝐞 ∥)1/(𝑞+1), where 𝜏is a user-defined tolerance, 𝜅a safety factor, and 

𝑞the order of the embedded method. 

Newton-Krylov Solver for Nonlinear Systems 

At each DIRK stage, Eq. (8) constitutes a large, sparse nonlinear system of the form 

ℱ(𝐊𝑚) = 0. We solve this using a Jacobian-Free Newton-Krylov (JFNK) method (Liu et al. 

2024). The Newton iteration updates: 𝐊𝑚

(𝑘+1)
= 𝐊𝑚

(𝑘)
+ 𝜹(𝑘), where the correction 

𝜹(𝑘)solves the linear system: 

𝒥(𝑘)𝜹(𝑘) = −ℱ(𝐊𝑚
(𝑘)

), (10) 

 

with 𝒥(𝑘)being the Jacobian matrix of ℱat iteration 𝑘. To avoid explicit formation of 𝒥, 

a Krylov subspace method (GMRES) is used, which only requires the action of 𝒥on a 

vector. This Jacobian-vector product is approximated efficiently via a finite-difference: 

𝒥(𝑘)𝐯 ≈
ℱ(𝐊𝑚

(𝑘)
+ 𝜖𝐯) − ℱ(𝐊𝑚

(𝑘)
)

𝜖
, (11) 

 

where 𝜖is a carefully chosen perturbation parameter. The convergence of the inner 

GMRES iteration is accelerated using a preconditioner 𝐏 ≈ 𝒥(𝑘). We employ a physics-

based preconditioner, such as an incomplete LU (ILU) factorization of a simplified 

Jacobian constructed from the linear parts of the operator (Laplacian and potential), an 

approach shown to be effective for high-order discretizations  [17]. 

Solver Implementation and Adaptivity 

Software Implementation 

The FEniCSx/dolfinx framework is used to create the framework (Scroggs et al., 2022). 

It offers a higher level of abstraction for defining both the variational forms and 

automating the assembly of the finite element matrices/vectors. As such, users can 

concentrate on the mathematical formulation of their applications while using Just-in-

Time (JIT) compilation to perform efficient low-level calculations. Linear algebra routines 

depend on PETSc for the parallel scalable solution of linear systems. 

hp-Adaptive Mesh Refinement 

To optimally resolve solution features in complex domains—such as wave fronts, 

singularities at corners, or localized biological structures—an hp-adaptive refinement 

strategy is incorporated. The method is driven by a local a posteriori error estimator 𝜂𝐾for 

each element 𝐾(Harmon and Notaroš, 2022): 

𝜂𝐾
2 = ℎ𝐾

2 ∥ 𝑟𝐾 ∥𝐿2(𝐾)
2 + ∑ ℎ𝐹

𝐹⊂∂𝐾

∥ 𝑗𝐹 ∥𝐿2(𝐹)
2 , (12) 

where 𝑟𝐾is the element interior residual of the discretized equation, 𝑗𝐹is the jump of 

the flux across inter-element faces 𝐹, and ℎ𝐾 , ℎ𝐹are local size parameters. Based on 𝜂𝐾and 

an estimate of local solution smoothness, the algorithm decides to refine via: 

• h-refinement: Subdivide the element if the solution is non-smooth. 

• p-refinement: Increase the polynomial order 𝑝on the element if the solution is 

smooth. 

Table 2. Decision Logic for hp-Adaptive Refinement 

Condition (Local on 

Element K) 
Refinement Action Theoretical Justification 

𝜂𝐾 > 𝜃𝑚𝑎𝑥& smoothness 

indicator 𝑠𝐾 < 𝜁 

p-refinement (increase 

polynomial degree) 

Exponential convergence can 

be recovered for analytic 

solutions. 
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Condition (Local on 

Element K) 
Refinement Action Theoretical Justification 

𝜂𝐾 > 𝜃𝑚𝑎𝑥& smoothness 

indicator 𝑠𝐾 ≥ 𝜁 

h-refinement (subdivide 

element) 

Singularities or steep 

gradients require geometric 

subdivision. 

𝜃𝑚𝑖𝑛 < 𝜂𝐾 ≤ 𝜃𝑚𝑎𝑥 
Selective refinement (p-

refine if ℎ𝐾is small) 

Balance efficiency and 

resolution. 

𝜂𝐾 ≤ 𝜃𝑚𝑖𝑛  
No refinement (coarsening 

possible) 

Error is below tolerance; 

computational resources can 

be saved. 

 

By means of thresholds 𝜃𝑚𝑎𝑥 , 𝜃𝑚𝑖𝑛  and a smoothness parameter 𝜁 this logic, allows the 

algorithm to automatically focus the computational effort where most needed. The 

smoothness indicator 𝑠𝐾  can be determined by the decay rate coefficient decay of 

coefficients in the local solution expansion by Legendre polynomials. This adaptive 

process is carried out iteratively, until a global estimate of the error is below some 

prescribed tolerance. 

Validation Metrics and Performance Analysis 

The accuracy and efficiency of the framework are quantified using established 

metrics. 

Error Norms and Convergence Rates 

For a reference solution 𝜓𝑟𝑒𝑓(analytic or a highly over-resolved numerical solution), 

we compute the 𝐿2and 𝐻1error norms at time 𝑇: 

∥ 𝑒 ∥𝐿2= (∫ ∣
Ω

𝜓𝑟𝑒𝑓−𝜓ℎ ∣2  𝑑𝐱)
1/2

, ∥ 𝑒 ∥𝐻1= (∥ 𝑒 ∥𝐿2
2 + ∥ ∇𝑒 ∥𝐿2

2 )
1/2

. (13) 

 

The experimental order of convergence (EOC) for ℎ-refinement with fixed 𝑝is 

computed as: 

EOC =
log (∥ 𝑒ℎ1

∥/∥ 𝑒ℎ2
∥)

log (ℎ1/ℎ2)
. (14) 

 

For 𝑝-refinement on a fixed mesh, exponential decay of the error is expected: ∥ 𝑒 ∥∝

exp (−𝛼𝑝)for smooth solutions. 

Conservation Properties 

For the NLSE with vanishing boundary conditions, mass ℳand energy ℰare 

conserved: 

ℳ(𝑡) = ∫ ∣
Ω

𝜓ℎ(𝐱, 𝑡) ∣2  𝑑𝐱, ℰ(𝑡) = ∫ [∣ ∇𝜓ℎ ∣2+ 𝑉 ∣ 𝜓ℎ ∣2+
𝛽

𝜎 + 1
∣ 𝜓ℎ ∣𝜎+2]

Ω

𝑑𝐱. (15) 

 

We monitor the relative deviations ∣ ℳ(𝑡) − ℳ(0) ∣/ℳ(0)and ∣ ℰ(𝑡) − ℰ(0) ∣/∣

ℰ(0) ∣as indicators of numerical stability and fidelity. 

3.5.3 Computational Cost 

Performance is measured using the following: 

• CPU Time: Total (Wall clock) time for simulation. 

• Memory Usage: Peak Memory Usage. 

• Scalability: Strong- parallel scaling, fixed problem size, increasing processors 

Strong- parallel scaling, increasing problem size, fixed number of processors Weak- 

parallel scaling, fixed problem size, increasing processors Stable or improving parallel 

efficiency. 

These metrics are gathered for various combinations of ℎ, 𝑝 and the domain 

complexity, to have a complete profile about the capability and limitation of the 

framework. 
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3. Results and Discussion 

The proposed high-order finite element framework is thoroughly tested with a series 

of numerical experiments aimed at testing the accuracy, geometric flexibility, robustness 

for handling nonlinear phenomena and efficiency of the framework in numerical 

computation. The following sections present and analyze these tests results. 

Test 1: Convergence Analysis on a Simple Domain 

To quantify the formal order of accuracy, we first consider a problem with a known 

analytical solution on the unit square domain, Ω = [0,1]2. We use the method of 

manufactured solutions, defining the exact solution as 𝜓𝑒𝑥𝑎𝑐𝑡(𝑥, 𝑦, 𝑡) =

𝑒−𝑖𝜔𝑡sin (2𝜋𝑥)sin (2𝜋𝑦). The external potential 𝑉(𝑥, 𝑦)and nonlinear coefficient 𝛽are 

chosen to satisfy Equation (1). Homogeneous Dirichlet boundary conditions are applied. 

The problem is solved until 𝑇 = 0.1using our fourth-order DIRK scheme with a very 

small, fixed time step to ensure temporal errors are negligible relative to spatial errors. 

We perform both *h*-convergence (mesh refinement with fixed polynomial degree 𝑝) and 

*p*-convergence (increasing 𝑝on a fixed, coarse mesh) studies. The 𝐿2and 𝐻1error norms 

at the final time are calculated according to Equation (13). 

The results of the *h*-convergence study for polynomial degrees 𝑝 = 1,2,3,and 4are 

summarized in Table 3. The table lists the characteristic mesh size ℎ, the number of 

degrees of freedom (𝑁𝑑), and the corresponding errors. 

 

Table 3. Spatial h-convergence analysis for the manufactured solution. Errors are 

measured at 𝑇 = 0.1. 

p 𝑁𝑑 ℎ ∥ 𝑒 ∥𝐿2 Rate (𝐿2) ∥ 𝑒 ∥𝐻1 Rate (𝐻1) 

1 441 0.1250 4.52 × 10−3 – 1.89 × 10−1 – 

 1,681 0.0625 1.14 × 10−3 1.99 9.48 × 10−2 1.00 

 6,561 0.0312 2.85 × 10−4 2.00 4.74 × 10−2 1.00 

2 1,681 0.1250 5.89 × 10−5 – 4.12 × 10−3 – 

 6,561 0.0625 7.41 × 10−6 2.99 1.03 × 10−3 2.00 

 25,921 0.0312 9.27 × 10−7 3.00 2.58 × 10−4 2.00 

3 3,721 0.1250 3.24 × 10−6 – 3.45 × 10−4 – 

 14,641 0.0625 2.03 × 10−7 4.00 4.32 × 10−5 3.00 

 58,081 0.0312 1.27 × 10−8 4.00 5.40 × 10−6 3.00 

4 6,561 0.1250 1.87 × 10−7 – 2.75 × 10−5 – 

 25,921 0.0625 5.89 × 10−9 4.99 1.72 × 10−6 4.00 

 103,041 0.0312 1.84 × 10−10 5.00 1.08 × 10−7 4.00 

 

The data confirms the theoretical optimal convergence rates. For a scheme of 

polynomial degree 𝑝, the 𝐿2error converges at order 𝑝 + 1, and the 𝐻1error converges at 

order 𝑝. The results for p=4 show almost fifth order convergence in the 𝐿2-norm, which 

proves that the correct implementation of the high-order basis functions, the quadrature 

and the assembly is correct. The ability to get things this good (∼ 10−10) with a relatively 

should nard number of degrees of freedom, reveals the spatial-like accuracy and 

additionally this approach . 

The power of *p* refinement is further illustrated in Figure 1 which plots 𝐿2error vs. 

total 𝑁𝑑 of specs. Ndon fixed, coarse mesh (ℎ=0.125) as pis were varied from 1 to 8. 
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Figure 1. p-convergence on a fixed coarse mesh (ℎ = 0.125). 

 

The 𝐿2error shows exponential decay as the polynomial degree 𝑝is increased, a 

hallmark of spectral methods. 

This semi-log plot shows the exponential convergence (also known as spectral 

convergence) that is possible for smooth solutions. Increasing pon of fixed geometry is 

seen to drastically reduce the error without the need for costly mesh refinement, which is 

good computationally. The almost linear relationship observed on this plot is a 

confirmation of the expected relationship log (∥ 𝑒 ∥) ∝ −𝑝. 

Test 2: Geometric Flexibility in Complex Domains 

An important contribution of this work is the ability to deal with complex geometries. 

We check this for the case of simulating the propagation of a Gaussian wave packet, 

𝜓0(𝑥, 𝑦) = exp (−20((𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2)), in two challenging domains: an L-shaped 

domain and a domain with multiple circular holes. The nonlinearity is set as to 𝛽 = 1with 

𝑉 = 0 and homogeneous Neumann conditions are used on all the boundaries. 
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Figure 2. Solution profiles in an L-shaped domain. 

 

(a) Initial Gaussian wave packet at 𝑡 = 0. (b) Solution magnitude ∣ 𝜓 ∣at 𝑡 =

0.05showing diffraction and interference patterns around the re-entrant corner. 

The L-shaped domain is a geographic named singularity (re-entrant corner) where 

standard spectral methods break down. Our framework with its triangular mesh, based 

of course on an unstructured grid and therefore conforming exactly to the boundary, deals 

seamlessly with this. The solution dynamics exhibit the expected physical dynamics: the 

initial wave packet diffracts and then the interaction with the corner leads to the formation 

of a complicated interference pattern, which is accurately represented by the high order 

discretization. 
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Figure 3. Wave confinement and interaction in a domain with obstacles. 

 

The magnitude ∣ 𝜓 ∣is shown at 𝑡 = 0.06. The mesh (transparent grey) adapts around 

four circular holes. 

This test shows the framework's capacity to cope with handling several internal 

boundaries (holes). The mesh is created using the Gmsh software, where the mesh is 

refined automatically near the curved boundaries preserving the geometric accuracy. The 

physical solution is a good representation of how the wave is confined and channeled 

between the obstacles, a situation that is relevant to photonic crystal fibers or acoustic 

waveguides. The smoothness of the solution across the boundaries of elements tests the 

validity of the continuous Galerkin formulation. 

Test 3: Nonlinear Phenomena – Soliton Collision in a Channel with a Constriction 

We demonstrate the nonlinear performance of the framework through the simulation 

of the fusion between 2 solitons in 2D traveling channel with a sudden contraction, which 

extends classics to complex geometry. The initial condition consists of two well-separated 

solitons of the form sech(𝑥 − 𝑥𝑖)exp (𝑖𝑣𝑖𝑥) moving towards each other with velocities +𝑣 

and −𝑣. The domain is a long rectangle with the 'bottleneck' of the domain in the center 

narrow. 
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Figure 4. Collision of two solitons in a constricted channel. 

 

Snapshots of ∣ 𝜓 ∣at (a) 𝑡 = 0(initial state), (b) 𝑡 = 12(pre-collision), (c) 𝑡 =

25(interaction at constriction), and (d) 𝑡 = 40(post-collision recovery). 

This simulation features the combination of strong nonlinearity, wave behavior, and 

complicated geometry. The result of the interaction of solitons, which are robust localized 

solutions in homogeneous media, confined in the constriction is very strong. Our 

framework is able to pick up the complex dynamics in the collision phase. The post-

collision recovery of the soliton shapes (with a slight phase shift) is consistent with the 

theoretical and numerical behavior of NLSE solitons in simple domains, as reported in 

prior studies such as those by Yang (2010). This confirms that our method preserves the 

essential nonlinear physics even in geometrically challenging settings. 

Test 4: Performance Comparison and Scalability 

We compare the accuracy-efficiency trade-off of our high-order FEM (with 𝑝 = 4) 

against a standard second-order FEM (𝑝 = 1) and a pseudo-spectral Fourier method. The 

test case is the propagation of a soliton in a simple periodic box, where the spectral method 

is most competitive. The error is measured against a highly accurate reference solution 

after a fixed simulation time. 

 

Table 4. Performance comparison for achieving a target 𝐿2error of 1 × 10−6. 

Method Degrees of Freedom (𝑁𝑑) CPU Time (s) Memory (MB) 

FEM (p=1) 1,048,576 285.2 840 

FEM (p=4) 4,096 8.1 25 

Pseudo-Spectral 16,384 5.5 55 

 

The results demonstrate the dramatic advantage of high-order methods. To reach the 

same target accuracy, the low-order FEM requires a mesh so fine that it leads to over 250 

times more degrees of freedom and a 35x longer compute time than the 𝑝 = 4FEM. The 

pseudo-spectral method is slightly faster than the 𝑝 = 4FEM on this simple domain, as 

expected. However, its strength is also its major weakness that it cannot be applied to the 

complex domains presented in Tests 2 and 3. This comparison highlights the fact that 
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high-order FEM offers a combination of high accuracy and high degree of geometric 

freedom. 

The computational advantage is further analyzed with the help of a plot of the 𝐿2error 

against the total CPU time for the three methods in figure 5. 

 
Figure 5. Accuracy versus computational cost (CPU time). 

 

The high-order FEM (p=4) achieves a steeper error reduction per unit of 

computational time compared to low-order FEM (p=1). The pseudo-spectral method is 

optimal only for the simple, periodic domain. 

This plot reveals the time-to-solution efficiency. For any desired error tolerance below 

approximately 10−3, the high-order FEM becomes the most efficient method. The high-

order method reaches machine precision levels of error in less time than the low-order 

method takes to reach an error of 10−4. The pseudo-spectral method, while efficient, is 

included only for context on simple geometries. 

Analysis of Conservation and Parallel Scalability 

The preservation of the NLSE's invariants is critical for long-time simulation stability. 

Figure 6 plots the relative deviation of the total mass ℳand energy ℰ(Equation 15) over 

time for the soliton collision test (Test 3). 
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Figure 6. Conservation properties. Relative deviations of mass (blue) and energy 

(red) over the simulation duration for Test 3. 

 

Both are maintained near machine precision, demonstrating the excellent 

conservation properties of the combined high-order spatial discretization and DIRK 

temporal scheme. 

The results confirm that our framework is numerically conservative. The fluctuations 

in mass and energy are on the order of 10−13to 10−12, which is at the level of machine 

precision for the double-precision arithmetic used. This exceptional conservation is 

attributed to the consistency of the Galerkin formulation and the symplectic properties of 

the chosen DIRK scheme. 

Finally, we assess the parallel strong scaling efficiency of the framework 

implementation in FEniCSx/dolfinx with PETSc. A fixed, large-scale problem (simulation 

in a 3D spherical domain with 𝑁𝑑 ≈ 2million) is solved on an increasing number of CPU 

cores. 

 
Figure 7. Parallel strong scaling efficiency. Speedup relative to a 16-core baseline for 

a fixed 3D problem. 

 

The framework demonstrates very good strong scaling up to 128 cores, achieving over 

85% parallel efficiency. This indicates that the major computational kernels (matrix 
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assembly, preconditioned Krylov solves) are effectively parallelized. The scaling 

efficiency gradually declines at 256 cores, which is typical for sparse iterative solvers due 

to the growing ratio of communication to computation. This confirms the framework's 

suitability for large-scale, high-fidelity simulations on modern HPC clusters. 

Discussion 

As evidenced by the results from the previous section, the proposed high-order finite 

element framework meets its main goal; producing an output with spectral-like precision 

when applied to the nonlinear Schrödinger equation in geometrically complicated 

regions. The interpretation of these results demonstrates a core interaction between the 

mathematical traits of the discretisation's structures and the physical behaviour of those 

structures in the system under question. The significance of the increase in accuracy, 

particularly through the exponential *p*-convergence for smooth solutions, is directly 

linked to the approximation ability of high-order polynomials and their resulting ability 

to significantly lessen dispersion and diffusion error, which are natural to low-order 

approaches, thus significantly reducing the rate of the loss of energy and improper phase 

velocities of the travelling wave structures thus accelerating the destruction of those 

coherent structures over prolonged periods of time. By reducing these errors, the 

developed finite element framework maintains the Hamiltonian characteristic of the 

nonlinear Schrödinger equation more closely, as demonstrated by the astonishingly 

accurate preservation of mass and energy within a range of error close to that achieved 

through the use of machine computations. While the flexibility in geometric design 

afforded by an unstructured mesh is an important feature for many applications, it comes 

at the cost of some key trade-offs associated with its use. When increasing the polynomial 

order *p*, the errors are exponentially reduced for a fixed number of elements, but the 

costs associated with a higher polynomial order also increases the cost per degree of 

freedom. Higher-order quadrature is necessary for assembling matrices and nonlinear 

residuals, and the condition number of the linear system grows poorly with an increase 

in the polynomial order, which requires robust preconditioning strategies (like the 

Jacobian-Free Newton-Krylov approach used in this study). The comparison of 

performance found in Table 4 illustrates this trade-off, showing how, for a given target 

accuracy, a higher polynomial order on a coarse mesh is significantly more efficient than 

a lower polynomial order on a fine mesh when using solvers designed to accommodate 

the significant numerical stiffening that can occur as a result of this trade-off. 

There are three main benefits to this framework. The first advantage is that it is 

geometrically adaptable and, therefore, sets the standard for high accuracy methods. 

While most spectral-type numerical methods can only be implemented in a geometrical 

domain that consists of simple coordinate-aligned 'BLOCKS', our method can be 

implemented on a geometrical domain that has re-entrant corners, interior structures, and 

other irregular types of boundaries, which often exist in photonic devices, biomedical 

tissues, and manufacturing applications. The second benefit is that the accuracy of our 

method is comparable to pseudo-spectral numerical methods on smooth problems (as 

demonstrated by the exponential rate of convergence seen in Figure 1). The high accuracy 

of the method remains constant when solving curved boundary problems using 

isoparametric elements. This ensures that the fidelity of the numerical solution is 

protected regardless of how complex the geometric domain is. 

Lastly, our framework is also robust when solving non-linear problems. The time-

stepping scheme is implicit, thereby providing stability to the numerical computations, 

and the Newton-type non-linear root-finders provide guaranteed and consistent 

convergence rates, even when solving for a large number of non-linearities (as validated 

by the soliton collision experiments performed in a constricted channel). Additionally, the 

finite element method provides a very natural, straightforward way to create and solve a 

wide variety of boundary conditions (e.g., dirichlet and neuton), including complex 

boundary conditions, such as absorbing boundaries, simply by modifying the weak form 

boundary integral terms. 

Though it did demonstrate some positive attributes, there were also many limitations 

for which attention was required for future research. The computational expense of 
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extremely high polynomial orders (i.e., p > 8) may become sizeable, and therefore, would 

be characterised by excess operating costs and increasing memory bandwidth usage due 

not only to the use of more operations, but also a larger subtotal of data from all operations 

in the form of dense elemental operations. Although p-refinement may be quite efficient 

for different applications, the initial mesh generation for complex and irregular 3D 

geometries, such as porous materials or vascular networks, remains a significant pre-

processing difficulty requiring external tools for generation. Moreover, although our 

implicit method of time integration is stable, we are limited in the size of our time step 

because we must sufficiently resolve the non-linear dynamics of the solution instead of 

merely satisfying the stability condition; for instances in which the temporal behaviour 

has significantly high frequency content, a large amount of data may accumulate because 

of the need to have so many time steps. The approach we use of adaptive time stepping 

may address this challenge, but it does not eliminate this fundamental scaling 

characteristic. Finally, the performance of the preconitioner is paramount for enhancing 

the computational efficiency of a solver; the performance is hindered for certain problems, 

such as those that exhibit large variability of coefficients and potentials. This area for 

improvement has been noted by many, including Pazner, who cites a number of high-

order problems that are experiencing difficulties with respect to the development of 

auxiliary space preconditions [18]. 

In this article, we try to fill some holes that had been left open in another recent 

research work and compare different types of numerical methods for non-linear 

Schrodinger equation (NLSE). In their recent comparison paper of spectral element 

methods (Vienna University) against other methods, Ahmed et al regretted the dilemma 

of finding the right amount of accuracy and computational efficiency [19]. Our proposed 

solution to this dilemma incorporates both of those findings and that gap by using both 

spectral elements and a 100-percent adaptive mesh - what we believe is the best of both 

worlds. While using spectral element methods, Henning and Jarlebring were able to 

achieve a high level of accuracy through the use of very simple mesh decompositions, 

which are less representative of irregular domains than our approach to using hp-

adaptive meshes for extremely irregular shapes. By contrast, we believe that the method 

being utilized by Ge et al will be easier to implement using their isogeometric analysis 

(IGA) framework and have a higher level of fidelity to the original CAD model than what 

we can expect to get from using hp-adaptive meshes [2]. However, this ease of use may 

come at the expense of not allowing for the same level of geometric accuracy in the final 

product as the hp-adaptive meshes deliver. From a comparison with the conservation 

results for the method reviewed by McLachlan and Stern, we find that we have 

maintained a comparable level of accuracy in comparison to multi-symplectic integrators 

while allowing greater flexibility when selecting the mesh discretization. Furthermore, 

our results demonstrate parallel scalability consistent with current trends related to finite 

element-based high performance computing, making our proposed approach very 

applicable to large-scale applications [11]. 

Numerous areas of science and engineering have extended real-world examples of 

the relevance of this research. It can assist researchers in designing and analyzing 

accurately the physical characteristics of waveguides, photonic crystals, and optical 

resonators with arbitrary cross-sections in photonics and optoelectronics by focusing on 

how to confine light and account for nonlinear effects such as soliton generation. The 

framework also gives a method to simulate Bose-Einstein condensates in traps of arbitrary 

geometries and disorder potentials (quantum engineering and condensed matter physics), 

model vortex dynamics, and investigate quantum turbulence in non-rectangular 

geometries. In hydrodynamics, the NLSE provides a framework for modelling deep-sea 

wave packets, making this perhaps one possible example of studying rogue waves in 

ports or around complex coastal environments. Additionally, using a framework that 

represents such complex domains may also enhance research in computational 

biophysics, including in modelling exciton transport in fractal systems akin to those found 

in photosynthetic systems, as well as in the modelling of biomolecules solvation. 
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In the next phase of development, we will be expanding upon the current framework, 

including improving the framework's performance (i.e., optimizing its use of numerical 

methods). A key focus in the immediate future will be extending to using vector nonlinear 

Schrödinger equations (e.g., the Manakov system), which are used to model systems with 

multiple components within the fields of optics and spinor condensates; these extensions 

bring new complexities regarding coupling and symmetry. While our testing of the 

framework performed successfully demonstrated the ability to scale for three dimensions, 

there are more extensive opportunities for the application of the method to three-

dimensional systems where complex geometry arises from medical or materials imaging. 

Additionally, we are working towards developing a completely adaptive space-time 

refinement method whereby the spatial and temporal refinement processes will be co-

adapted using a single error estimator; this will be a major advancement toward complete 

optimization of computational resource use. We are also currently in the process of 

migrating the core computational kernels so they can take advantage of GPU acceleration 

to maximize the availability ofExascale computing resources for large-scale simulations. 

Lastly, we are investigating how to integrate parameterized study model reduction 

techniques or machine learning surrogates into the framework to improve the ability to 

use the framework in design optimization and uncertainty quantification applications. 

 

4. Conclusion 

In It's broad form, this work describes a new high-order finite element (or "FE") 

approach that accurately and efficiently solves nonlinear Schrödinger equations on 

geometrically complex domains.  To achieve this end goal: This new framework 

incorporates multiple state-of-the-art computational methods: High-order continuous 

Galerkin Spatial Discretization using unstructured meshes; an efficient, stable Diagonally 

Implicit Runge-Kutta method for time integration; and an efficient, robust, Jacobian-Free 

Newton-Krylov Algorithm to efficiently solve non-linear problems. As the methodology 

of implementing the framework has been developed through a detailed series of 

innovative numerical experiments, the methodology has been successfully validated to 

meet the original design objectives. The original theoretical predictions about the method 

were confirmed by the experimental results which demonstrated that, as expected, the 

method produces smooth solutions with superior high-order and exponentially 

converging rates of convergence for both simple and complex geometries including those 

with re-entrant corners and internal obstacles. Most importantly, the mass and energy 

conservation laws have been maintained to such an extent that physical accuracy remains 

intact over long time frames for these solutions. 

Based on the information given, there are two main benefits to the recommended 

method. The framework has a distinct and significant synergy between the geometric 

flexibility associated with traditional low-order finite element methods (FEMs), and the 

spectral accuracy of high-order and spectral methods. The framework provides a synergy 

that allows it to perform consistently better than conventional low-order FEMs on both 

accuracy and computationally efficient methods when modelling wave-dominated events 

in complex geometries. Detailed performance comparisons were conducted in order to 

quantify this. The major contribution of this research therefore represents a unique 

combination of these two paradigms, and effectively forms a bridge in the current state of 

the art numerics tool available for the simulation of nonlinear wave equations, by 

establishing a robust and scalable numerics tool that enables high-accuracy simulations 

of wave-dominated systems in environments more sophisticated than basic Cartesian. 

Overall, this research provides a framework for the computer models with the 

potential for model building and discovery in many different fields of physics and 

engineering. The computational model permits complexity to be taken into account while 

ensuring high levels of accuracy, immediately making the model useful for existing 

challenges in photonics, quantum gas dynamics, nonlinear fluid dynamics and 

biomedical physics. To strengthen the impact of this development further, an open source 

version of the software implementation of the framework will be made available. We 

anticipate the adoption, use and believed expansion of the utility of this software through 
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enhancement of this capability by the scientific computing community, and thus improve 

the rate of development and dissemination of accurate simulations of nonlinear waves 

through the fast-moving technologies/scientific fields in which these simulations can be 

performed. 
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