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Abstract: This paper introduces a new type of high order finite element method for numerically
solving NLSEs in complex domains. NLSEs play a central role in the modelling of wave phenomena
in optics, quantum mechanics, and fluid dynamics, however, finding their solution in geometrically
complex domains is still a challenge due to nonlinearities and boundary complexities. The
framework that is proposed is basing on high-order finite element discretization on unstructured
meshes, which makes it possible to appropriately and flexibly compute with complex geometries.
Key aspects are weak formulation with adaptation time integration, strong treatment of terms with
nonlinearity by Newton-type iterations, and assignment of various other boundary conditions.
Numerical experiments show high order convergence rates, conservation properties and better
performance than low order methods. In order to validate the efficiency and accuracy of the
framework, the soliton propagation, vortex dynamics and domains with irregular shapes are used
as the benchmarks. This work leads to the development of numerical methods for NLSEs
uncombining geometric flexibility and high accuracy which may provide a means for simulation in
photonic devices, Bose-Einstein condensates, and other applications.

Keywords: Nonlinear Schrodinger equation; High-order finite element method; Complex domains;
Numerical simulation; Spectral element method

1. Introduction

The nonlinear Schrodinger equation (NLSE) is a cornerstone model to describe the
evolution of complex wave fields in which the delicate balance of vastly different effects
is between dispersive effects and nonlinear effects. This universal equation, usually
formulated in its canonical form ip_t+V*2 P+[P|*2 =0, describes a dizzying variety of
physical phenomena, ranging from the propagation of optical pulses in
telecommunication fibers, to the dynamics of Bose-Einstein condenses, to the behaviour
of deep-water waves, and to plasma dynamics. Its importance in a variety of fields of both
physics and engineering requires robust, accurate, and flexible numerical solvers, which
need to be able to capture complex dynamics such as the formation of solitons, wave
collapse and vortex dynamics.

The ability to accurately simulate these types of behavior in a realistic environment
can be severely limited by the complexity of the shapes of the objects. As practical
applications generally involve geometries that are much more irregular in shapes (i.e.
Photonic Crystal Fibers, Micro-Structured Optical Devices) and geometries that vary over
time (i.e. Trapped Condensates, with arbitrarily-shaped potentials), the reliance of
traditional numerical approaches (e.g. finite difference and pseudo-spectral methods) on
structured grids means that approximating the curvature of the geometries will lead to
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inaccurate results and inefficiency in calculations due to the difficulty of creating and
maintaining such an approximation. Low-order finite element methods (FEM) offer the
advantage of the ability to be flexible with respect to the geometry of the object using
unstructured mesh. However, the low-order nature of FEM results in excessive numerical
diffusion and dispersion and thus the need for unnecessarily fine mesh grids to achieve
the accuracy necessary for wave-dominated problems. In contrast, although they offer
high accuracy on simple geometries with little flexibility, development efforts are
underway to provide more flexibility for high-accuracy spectral schemes. The spectral
element techniques described by Henning and Jarlebring show high rates of convergence;
however, the primary focus of this technique is on simple regular geometries [1].
Likewise, Ge et al.'s isogeometric analysis formula is good at providing geometric
accuracy, but typically results in high computational costs with nonlinearities that are
explicit time-dependent [2]. Instead, although there have been several studies on adaptive
time-step methods to increase performance for stiff problems (specifically those of Sabdin
et al, adaptive time-step methods utilizing high-order spatial discretizations in
conjunction with complex mesh types for the nonlinear Schrodinger equation have not
yet been adequately investigated [3]. Therefore, challenges remain in how best to
incorporate and treat nonlinear phenomena using high-order FEMs so that conservation
of mass and energy will occur. This issue remains a significant challenge, as highlighted
by the work of Ahmed et al, who reviewed numerous nonlinear wave solvers and
compared their results [4].

Our main aim is to offer a complete high-order finite element approach to nonlinear
Schrodinger equations within complicated domains and use the combination of
unstructured mesh-based FEM's ability to utilise complex geometric shapes along with
the spectral accuracy of high-order polynomial basis functions to develop a new and
generalised computational method. This new finite element framework consists of a
continuous Galerkin discretisation that uses Lagrange polynomials of any degree that can
take into consideration complex boundaries. Diagonally implicit Runge-Kutta for time
integration is utilised for maintaining stability and robust Newton-like iterations are used
for the nonlinear solver for efficient convergence. In summary, this paper is primarily
focused on making three contributions to the field of computational fluid dynamics
through its design of a novel high-order finite element framework. This paper details our
efforts to create and deploy a high-performance numerical method to tackle numerous
real world engineering problems more effectively than traditional means. Our three
primary goals were: first, to create a unified high-order finite element (FEM) formulation
that will combine the flexibility of geometry with rapid exponential convergence (e.g., for
smooth solution); second, to develop efficient time-stepping and nonlinear solvers
specifically for this high-order FEM framework while ensuring that key conservation laws
are adhered to and always satisfied most accurately; third, to develop a complete set of
numerical validations that will support rigorous testing of this formulation in a variety of
ways, including: demonstrating how the method works on canonical problems with
respect to convergence rates, demonstrating how well the method scales (higher
resolutions); and demonstrating how well it applies to “nontrivial” geometries through
the analyses of actual complex geometries using the benchmark data available in the
literature. The capabilities of this framework to accurately capture the physics associated
with geometries with re-entrant corners and holes will be specifically highlighted due to
the similarity in the geometric challenges encountered by Berrone et al for elliptic
problems [5]. The rest of the paper is organized as follows. In Section 2, we provide an
extensive review of the literature and placement of our work in the current numerical
environment. In Section 3, we provide the complete mathematical and computational
framework for the solution; in Section 4, we provide results (quantitative validation); in
Section 5, we provide a discussion of the interpretation of our results and their
implications; and in Section 6, we provide a summary and recommendations for future
research.
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Literature Review

The solution of the Nonlinear Schrodinger Equation (NLSE) numerically has been
researched widely with a plethora of methods, each with different strengths and
weaknesses. The split-step Fourier method (SSFM) is still widely used because of its
effectiveness and its exact treatment of dispersion for a simple periodic domain.
Optimizations recently completed by Bonsel on SSFM for optical pulse propagation and
the finite-difference time-domain (FDTD) method have also shown how easily these two
methods can be implemented and improved upon through a better understanding of how
they simulate the behaviour of bosons and Bose-Einstein condensates [6]. However, both
SSFM and FDTD are limited due to the requirement that they use regular structured
Cartesian grids, which makes it difficult to simulate the behaviour of bosons accurately in
complex irregular geometries where the accuracy of the simulations depends on how well
the grid conforms to the geometry. Pure spectral methods provide a very accurate means
of simulating exactly smooth solutions, but they, too, are limited in that they can only be
used to simulate solutions with a specific regular boundary. The finite element method
(FEM) provides a natural and easy way to work with irregular geometries by providing a
method to create unstructured or non-regular meshes. Early and continued applications
of FEM to the NLSE have largely utilized low-order linear or quadratic elements, as in the
conservative schemes analyzed by Tang et al for modeling condensates in traps [7]. While
successful in capturing basic dynamics, these low-order formulations are plagued by
significant numerical dispersion and diffusion errors, necessitating extremely fine meshes
to achieve acceptable accuracy for wave-dominated problems—a computationally
prohibitive requirement for long-time simulations or three-dimensional studies, a point
critically emphasized by Esen et al [8].

High-order numerical methods are the focus of many researchers due to the accuracy
limitations associated with traditional lower-order numerical methods. High-order
techniques include high-order finite element methods, such as the spectral element
method (SEM), the hp-FEM method, and the discontinuous Galerkin (dG) method. Due
to their ability to achieve exponential convergence for smooth solutions and to be well-
suited for complex geometries, researchers have extensively studied these methods in the
context of solving PDEs using computational methods. An outstanding example of the
effectiveness of combining geometric methods with high-order approximations is found
in the work of Berrone et al. in which an hp-adaptive framework is used to solve elliptic
problems posed on polygonal domains [5]. The suitability of using dG methods as a basis
for models that can take advantage of both the characteristics of parallelism and
conservation also leads to a multitude of different applications. For example, dG methods
are used by Gu to model KdV-type systems [9], which are commonly known as nonlinear
and thus a challenge for the development of numerical methods to solve PDEs. Even
though dG has proven to be a reliable method for the solution of a number of classes of
PDEs, there has been a noticeable lack of work dedicated to the translation of these
advantages to the unique challenges posed by the nonlinear Schrodinger equation
(NLSE). One exception to such a paucity of studies related to the NLSE is the very recent
development of a spectral element method to solve the Gross-Pitaevskii equation (GPE)
by Henning-Jarlebring [1]. However, their work primarily concentrates on the GPE solved
over the typical configuration of standard domains. The study conducted by Ge et al.
(2023) shows that isogeometric analysis (IGA) has advantages, such as connecting with a
CAD model directly as well as utilizing high order B-Spline Basis Functions, providing
greater geometric fidelity. The authors also note that the increased computational
complexity and cost of evaluating nonlinear terms in explicit time-dependent problems
make IGA challenging. Parallel approaches to solving such types of problems on complex
domains typically rely on Non-overlapping Domain Decomposition Methods (NDM),
such as the Schwarz algorithm proposed by Gander et al for Semi-linear problems, to
enable the use of higher order discretization methods in subdomains. However, NDMs
face challenges in achieving efficient transmission conditions while maintaining global
conservation [10]. Another approach to improving the efficiency of solving NLSEs in
complex geometries is through Mesh Adaptation Techniques driven by A Posteriori Error
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Estimators. While the r-adaptive moving mesh technique proposed by Aballay et al.,
(2025) may provide efficiency improvements, its application is usually limited to
smoothly deforming meshes and can create difficulties in preserving high order accuracy.

This paper, through its extensive literature review and analysis, identifies a gap in
current research regarding the finite element analysis (FEA) of Nonlinear Schrodinger
Equations (NLSE). Current FEA methodologies do not provide an integrated, higher-
order finite element framework that addresses the three principal issues associated with
NLSEs: the geometric complexity (i.e., domains having re-entrant corners, holes and other
complex-shaped boundaries), the development of high-order spatial discretizations (far
exceeding second-order) efficiently implemented, and the correct and robust treatment of
the nonlinear term in an implicit time-stepping circumstances (the method most widely
accepted for studying the NLSE). Most of the high-order FEA approaches developed to
date (including the isogeometric analysis [IGA] approach developed by Ge et al. for the
NLSE) have emphasised perfect geometric representation through fine discretizations and
applied less focus on developing the high-efficiency solver computing environment
required to execute high-efficiency nonlinear solvers [2]. In contrast, the solver-efficiency-
driven work developed by Lovisetto et al. (2024) using operator-integrated factor splitting
for FEA has sacrificed either geometric complexity or the development of high-order
accuracies. Finally, many of the currently published references that describe conservation
properties (mass and energy) in relation to high-order, geometrically complex finite
element analysis for the NLSE often do not explicitly state the conservation properties,
but rather treat conservation as a secondary design consideration (e.g., Ahmed et al.
(2024)). McLachlan and Stern's findings on multi-symplectic integrators for solving multi-
dimensional systems of ordinary differential equations (ODEs) on unstructured grids
offer a strong theoretical base [11], but do not have a general design or implementation
for use in the real world. In addition, Farag and colleagues have completed an extensive
benchmark study of various NLSE solvers that vividly demonstrates how different
methods can perform well (i.e., provide accurate solutions) in one area (e.g., accuracy on
simple domains) while exhibiting poor performance elsewhere (e.g., accuracy on complex
domains), particularly when both nonlinearity and the complexity of the domain exist. A
single framework that integrates these two areas of research would be beneficial [12].

The current paper is positioned in this setting. The proposed and validated
comprehensive high-order continuous Galerkin Finite Element Framework develops a
solution to the identified gap in the literature for the numerical simulation of the nonlinear
Schrodinger equation (NLSE) for nonlinear wave systems in more complex geometries.
The new framework incorporates knowledge gained from a number of previously
developed finite element methods, such as the geometric flexibility provided by the use
of irregular meshes, as is common in standard finite element method, and the adoption of
both high order (p-refinement) and adaptive (hp-refinement) strategies advocated by
Berrone et al.; and to create robust and efficient computational methods using either
implicit time integration techniques or Newton-type nonlinear solvers that focus on
maintaining discrete conservation laws as outlined by Ahmed and others. This research
unifies the three elements of geometric flexibility, spectral-like accuracy and the
robustness of the nonlinear solvers into a comprehensive tested computational tool, which
represents a substantial improvement beyond the current methods and is capable of
modeling high-fidelity nonlinear wave behaviour in realistic geometric environments that
were previously computationally intensive or infeasible to model.

2. Materials and Methods

The development of a robust, high-order finite element framework for solving the
Nonlinear Schrédinger Equation (NLSE) in complex domains requires a meticulously
structured numerical methodology. The formulation of a solid and complex domain finite
element model for the solvability of the Nonlinear Schrodinger Equation (NLSE) needs an
extreme attention to numerical methodology. The approach combines the advanced
spatial discretization with stable temporal integration, the efficient nonlinear solvers and
rigorous validation protocols. The following sections describe each of the components of
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this methodology to natural detail creating a complete and reproducible computational
pipeline.
Mathematical Model and Governing Equations

The Nonlinear Schrodinger Equation presented in this note as a dimensionless,
generalized equation is the central topic of this presentation. To cover the broad spectrum
of biomedical and physical applications (that start with the propagation of light in a turbid
biological tissue and reach the dynamics of Bose-Einstein condensates in patterned traps)
we consider the form with an external potential:

L1699 B -
i = —VAE D + VPO + 1P 17 P(xt),x €Q, t € (0,T], 1)

where Y (x,t) is the complex-valued wave function, V(x) is a real-valued external
potential (e.g., an optical trap or tissue scattering profile) and § controls the strength of
the nonlinearity. The exponent sis usually 2 for cubic nonlinearities, but is left for
generality. The domain Q ¢ R%(d = 2,3) is assumed to be geometrically complex, possibly
with re-entrant corners, internal impediments or complicated boundaries that are derived
from medical imaging data.

The system is closed with the following initial condition and some appropriate
boundary conditions:

P(x,0) =P (x)in Q, 2)
B() = Oon Q. 3)

The boundary operator Bcan represent homogeneous Dirichlet (i = 0), Neumann
(VY - n = 0), periodic, or absorbing boundary conditions. For the problems of emulation
of open systems, for example the scattering of waves in biological medium, a perfectly
matched layer (PML) technique is implemented by modifying the potential term V(x)in a
surrounding absorbing region [13]

Spatial Discretization via High-Order Finite Elements
Mesh Generation and High-Order Basis Functions

The complex domain Qis discretized by conforming mesh 7;, which is composed of N,
non-overlapping elements K. For the highest possible level of geometric freedom, we
mainly use unstructured triangular (2D) or tetrahedron (3D) elements, using software
such as Gmsh [14]. To obtain high-order accuracy, we use a continuous Galerkin
formulation of using Lagrange polynomial basis functions of degree p>=3on these
elements. The finite dimensional solution space is:

W = {v, € C°(Q) N H*(Q): vy, Ik€E Pp(K) VK € T3}, (4)

where $,(K)is the space of polynomials of total degree < pon element K. The

approximate solution ¥, (x, t) € V;Pis expressed as:
Ng

a0 = ) YOG, ©)
=1

where {qu ?’flare the global basis functions, ¥;(t)are the time-dependent nodal

coefficients, and N,is the total number of degrees of freedom.
Weak Formulation and Matrix Assembly

The weak form of Eq. (1) is obtained by multiplying by a test function v, € VP,
integrating over (), and applying integration by parts for the Laplacian term:

5}
[ Srvndx= [ Vo Vot [0+ 10 v dx— [ Tonmuds @

For Dirichlet boundaries, the surface integral vanishes. Substituting Eq. (5) into Eq.
(6) yields the semi-discrete matrix system:
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dw
M——=(S+V+N¥)Y, )

where ¥(t) = [¥; (1), ..., Py, (t)]"and:

. Mass matrix: M;; = [ ¢; ¢; dx

. Stiffness matrix: S;; = [,V ; - Vo; dx

. Potential matrix: V;; = [ V(X) ¢;; dx

. Nonlinear matrix: N (¥);;arises from the term fn B 1Yy 17 ¢p;¢p; dxand

depends on the solution V.

Efficient and accurate assembly of these matrices is critical. We use high-order
Gaussian quadrature rules with a sufficient number of points (n, « p%) to ensure
integration errors are negligible compared to discretization errors. The assembly is
performed element-wise, leveraging the local-to-global mapping and pre-computed
values of basis functions and their derivatives on a reference element, as detailed in the

high-order spectral element literature [15].

Table 1. Characteristics of High-Order Elements and Quadrature Rules

Basis Typical Integration
Element . . . N
Polynomial Quadrature Points per Primary Application
Type
(Degree p) Rule Element
Triangle Lagrange Dunavantrules|| = (p+ 1)(p |Highly irregular,
(Complete +2)/2 biological domains
polynomial) (e.g., tissue sections).
Quadrilateral|Tensor-product ||Gauss- (p+1)4 Regions amenable to
Lagrange Legendre mapping (e.g., vessels,
product rule structured
subdomains).
Tetrahedron |[Lagrange Keast rules x p? Complex 3D
(Complete anatomical volumes
polynomial) (e.g., organ
geometries).

The choice of element type and quadrature rule is a trade-off between geometric
flexibility and computational efficiency. Triangular/tetrahedral elements provide
unmatched adaptability for meshing convoluted biological shapes obtained from
imaging. Quadrilateral/hexahedral elements offer superior efficiency due to tensor-
product structures, enabling techniques like sum factorization which reduce operation
counts from 0(p**)to 0(dp**!). The quadrature rules are selected to be exact for the
polynomial integrands encountered in the linear matrices, and are of higher order for the
nonlinear term to handle the increased polynomial degree of | ¥, 17 ¥;.

Temporal Integration and Nonlinear Treatment
Implicit Time-Stepping Scheme

The semi-discrete system (Eq. 7) is a nonlinear system of ordinary differential
equations. For stability, especially with the stiff nature of the high-order spatial operator,
we employ an implicit time-marching scheme. A diagonally implicit Runge-Kutta (DIRK)
method of order 4 with an embedded 3rd-order estimator is chosen [16]. This scheme
provides high accuracy, L-stability (damping high-frequency spurious modes), and
enables adaptive time-stepping.

Let ¥" = ¥(t,). One step from t,to t,,; = t, + Atwith an s-stage DIRK method
involves solving for the stage vectors K,,:

K, = M7Y(S+VAN(W+AL Xy any KD ) (PPHAL X a K)), m =1, ., (8)
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where a,,;are the Butcher tableau coefficients. The solution is then updated:

S
Wt = gn g Z by Ko )

m=1

The embedded formula provides an error estimate efor adaptive time-step control:
Atpen = Atgq - k- (/1 € DY@+, where Tis a user-defined tolerance, ka safety factor, and
gthe order of the embedded method.

Newton-Krylov Solver for Nonlinear Systems

At each DIRK stage, Eq. (8) constitutes a large, sparse nonlinear system of the form

F(K;;,) = 0. We solve this using a Jacobian-Free Newton-Krylov (JENK) method (Liu et al.

2024). The Newton iteration updates: Kgf D _ K% + 8®, where the correction

8®solves the linear system:
JR8W = —F (K, (10)

with J(")being the Jacobian matrix of Fat iteration k. To avoid explicit formation of 7,
a Krylov subspace method (GMRES) is used, which only requires the action of Jon a
vector. This Jacobian-vector product is approximated efficiently via a finite-difference:
FKY + ev) — F(KE)
€

JPv =~ (11)

where €is a carefully chosen perturbation parameter. The convergence of the inner
GMRES iteration is accelerated using a preconditioner P ~ J®. We employ a physics-
based preconditioner, such as an incomplete LU (ILU) factorization of a simplified
Jacobian constructed from the linear parts of the operator (Laplacian and potential), an
approach shown to be effective for high-order discretizations [17].
Solver Implementation and Adaptivity
Software Implementation

The FEniCSx/dolfinx framework is used to create the framework (Scroggs et al., 2022).
It offers a higher level of abstraction for defining both the variational forms and
automating the assembly of the finite element matrices/vectors. As such, users can
concentrate on the mathematical formulation of their applications while using Just-in-
Time (JIT) compilation to perform efficient low-level calculations. Linear algebra routines
depend on PETSc for the parallel scalable solution of linear systems.
hp-Adaptive Mesh Refinement

To optimally resolve solution features in complex domains—such as wave fronts,
singularities at corners, or localized biological structures—an hp-adaptive refinement
strategy is incorporated. The method is driven by a local a posteriori error estimator nyfor
each element K(Harmon and Notaros, 2022):

M= B i Mg D he Wi W, (12)
FcoK
where 1y is the element interior residual of the discretized equation, jris the jump of

the flux across inter-element faces F, and hy, hrare local size parameters. Based on ngand
an estimate of local solution smoothness, the algorithm decides to refine via:

. h-refinement: Subdivide the element if the solution is non-smooth.
. p-refinement: Increase the polynomial order pon the element if the solution is
smooth.
Table 2. Decision Logic for hp-Adaptive Refinement
Condition (Local on
( Refinement Action Theoretical Justification
Element K)
Exponential convergence can
Nk > Omaxr& smoothness p-refinement (increase P & .
3 . be recovered for analytic
indicator sy < ¢ polynomial degree) .
solutions.
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Condition (Local on
Element K)

Refinement Action

Theoretical Justification

Nk > Opmax& smoothness
indicator sx = ¢

h-refinement (subdivide
element)

Singularities or steep
gradients require geometric
subdivision.

Hmin < Nk < Hmax

Selective refinement (p-

Balance efficiency and

refine if hyis small) resolution.

Error is below tolerance;

No refinement (coarsening :
computational resources can

<0,
e = Umin possible)

be saved.

By means of thresholds 6,4y, 1in and a smoothness parameter { this logic, allows the
algorithm to automatically focus the computational effort where most needed. The
smoothness indicator sx can be determined by the decay rate coefficient decay of
coefficients in the local solution expansion by Legendre polynomials. This adaptive
process is carried out iteratively, until a global estimate of the error is below some
prescribed tolerance.

Validation Metrics and Performance Analysis

The accuracy and efficiency of the framework are quantified using established
metrics.

Error Norms and Convergence Rates

For a reference solution ,..f(analytic or a highly over-resolved numerical solution),
we compute the L?and H'error norms at time T:

Nellz= (fy, 1brer—thn 12 dx)"* e = (e 1% + 1 Ve 1%) % (13)

The experimental order of convergence (EOC) for h-refinement with fixed pis
computed as:

EOC = log (Il en, 1I/1l en, 1)
log (hy/h)

(14)

For p-refinement on a fixed mesh, exponential decay of the error is expected: || e [l
exp (—ap)for smooth solutions.
Conservation Properties

For the NLSE with vanishing boundary conditions, mass Mand energy Eare
conserved:

M) = fnll/)h(x,t) 12 dx,E(t) = L[I Vi, 12+ V | Py 12+ A

o+2 d
0+1|l/)hI X

(15)

We monitor the relative deviations | M (t) —M(0) |/M(0)and | E(t) — E(0) I/]
£(0) las indicators of numerical stability and fidelity.

3.5.3 Computational Cost

Performance is measured using the following:

. CPU Time: Total (Wall clock) time for simulation.
J Memory Usage: Peak Memory Usage.
. Scalability: Strong- parallel scaling, fixed problem size, increasing processors

Strong- parallel scaling, increasing problem size, fixed number of processors Weak-
parallel scaling, fixed problem size, increasing processors Stable or improving parallel
efficiency.

These metrics are gathered for various combinations of h,p and the domain
complexity, to have a complete profile about the capability and limitation of the
framework.
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3. Results and Discussion

The proposed high-order finite element framework is thoroughly tested with a series
of numerical experiments aimed at testing the accuracy, geometric flexibility, robustness
for handling nonlinear phenomena and efficiency of the framework in numerical
computation. The following sections present and analyze these tests results.
Test 1: Convergence Analysis on a Simple Domain

To quantify the formal order of accuracy, we first consider a problem with a known
analytical solution on the unit square domain, Q = [0,1]2. We use the method of
manufactured solutions, defining the exact solution as Yeyae(x, ¥, 1) =
e~@tsin (2mx)sin (2y). The external potential V(x,y)and nonlinear coefficient Bare
chosen to satisfy Equation (1). Homogeneous Dirichlet boundary conditions are applied.

The problem is solved until T = 0.1using our fourth-order DIRK scheme with a very
small, fixed time step to ensure temporal errors are negligible relative to spatial errors.
We perform both *h*-convergence (mesh refinement with fixed polynomial degree p) and
*p*-convergence (increasing pon a fixed, coarse mesh) studies. The L?and H'error norms
at the final time are calculated according to Equation (13).

The results of the *h*-convergence study for polynomial degrees p = 1,2,3,and 4are
summarized in Table 3. The table lists the characteristic mesh size h, the number of
degrees of freedom (N;), and the corresponding errors.

Table 3. Spatial h-convergence analysis for the manufactured solution. Errors are
measured at T = 0.1.

bl M || n | welz |Rate@®] el |Rate (1)
]| 441 Jpa2sofa52x102] - Jugox107 - ]
L]l 1681 Jo.0625] 1.14 x 102][ 199 ]j948x 107 1.00 |
[ 6561 Jo.0312][2.85 x 10*][ 2.00 |[474x 1077 100 ]
2] 1681 J.1250]5.89 x103] - Jarzx 10 - ]
[ ][ 6561 J0.0625]7.41 x 10-¢][ 2.99 J1.03x 1073 200 |
[ ][ 25921 J0.0312][9.27 x 107][ 3.00 ]258x 10-[ 200 ]
3] 3721 Jo.a250]324 x10°] - [Basx107 - ]
1
|
|
|

[ ][ 14,641 ]|o.0625] 2.03 x 10| 4.00 [[432 x 10-5] 3.0
[ ] 58,081 J0.0312] 1.27 x 10*]| 4.00 [[5.40 x 10-] 3.0
4] 6561 Joa2so[1.87x 107 = J27sx 1078 -

[ ][ 25,921 Jjo.0625] 5.89 x 10°]| 499 [[1.72 x 10-| 4.00
[ ][103,041 ]|0.0312]1.84 x 10-2°] 5.00 [[1.08 x 10-7] 4.00

The data confirms the theoretical optimal convergence rates. For a scheme of
polynomial degree p, the L?error converges at order p + 1, and the H'error converges at
order p. The results for p=4 show almost fifth order convergence in the L?>-norm, which
proves that the correct implementation of the high-order basis functions, the quadrature
and the assembly is correct. The ability to get things this good (~ 107'%) with a relatively
should nard number of degrees of freedom, reveals the spatial-like accuracy and
additionally this approach.

The power of *p* refinement is further illustrated in Figure 1 which plots L?error vs.
total N, of specs. Ndon fixed, coarse mesh (h=0.125) as pis were varied from 1 to 8.
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p-convergence on Fixed Coarse Mesh (7 =0.125)
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Figure 1. p-convergence on a fixed coarse mesh (h = 0.125).

The L?error shows exponential decay as the polynomial degree pis increased, a
hallmark of spectral methods.

This semi-log plot shows the exponential convergence (also known as spectral
convergence) that is possible for smooth solutions. Increasing pon of fixed geometry is
seen to drastically reduce the error without the need for costly mesh refinement, which is
good computationally. The almost linear relationship observed on this plot is a
confirmation of the expected relationship log (Il e II) « —p.

Test 2: Geometric Flexibility in Complex Domains

An important contribution of this work is the ability to deal with complex geometries.
We check this for the case of simulating the propagation of a Gaussian wave packet,
Yo(x,y) = exp (—20((x — x%0)* + (¥ — ¥9)?)), in two challenging domains: an L-shaped
domain and a domain with multiple circular holes. The nonlinearity is set as to § = 1with
V = 0 and homogeneous Neumann conditions are used on all the boundaries.
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(a) Initlal Gaussian Wave Packet at /=0
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Figure 2. Solution profiles in an L-shaped domain.

(a) Initial Gaussian wave packet at t = 0. (b) Solution magnitude | |at t =
0.05showing diffraction and interference patterns around the re-entrant corner.

The L-shaped domain is a geographic named singularity (re-entrant corner) where
standard spectral methods break down. Our framework with its triangular mesh, based
of course on an unstructured grid and therefore conforming exactly to the boundary, deals
seamlessly with this. The solution dynamics exhibit the expected physical dynamics: the
initial wave packet diffracts and then the interaction with the corner leads to the formation
of a complicated interference pattern, which is accurately represented by the high order
discretization.
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Wave Confinement in Domain with Circular Obstacles at 1=0.06
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Figure 3. Wave confinement and interaction in a domain with obstacles.

The magnitude | ¥ lis shown at t = 0.06. The mesh (transparent grey) adapts around
four circular holes.

This test shows the framework's capacity to cope with handling several internal
boundaries (holes). The mesh is created using the Gmsh software, where the mesh is
refined automatically near the curved boundaries preserving the geometric accuracy. The
physical solution is a good representation of how the wave is confined and channeled
between the obstacles, a situation that is relevant to photonic crystal fibers or acoustic
waveguides. The smoothness of the solution across the boundaries of elements tests the
validity of the continuous Galerkin formulation.

Test 3: Nonlinear Phenomena — Soliton Collision in a Channel with a Constriction

We demonstrate the nonlinear performance of the framework through the simulation
of the fusion between 2 solitons in 2D traveling channel with a sudden contraction, which
extends classics to complex geometry. The initial condition consists of two well-separated
solitons of the form sech(x — x;)exp (iv;x) moving towards each other with velocities +v
and —v. The domain is a long rectangle with the 'bottleneck’' of the domain in the center
narrow.
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Colliston of Two Solitons In a Constricted Channel
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Figure 4. Collision of two solitons in a constricted channel.

Snapshots of | lat (a) t = O(initial state), (b) t = 12(pre-collision), (c) t =
25(interaction at constriction), and (d) t = 40(post-collision recovery).

This simulation features the combination of strong nonlinearity, wave behavior, and
complicated geometry. The result of the interaction of solitons, which are robust localized
solutions in homogeneous media, confined in the constriction is very strong. Our
framework is able to pick up the complex dynamics in the collision phase. The post-
collision recovery of the soliton shapes (with a slight phase shift) is consistent with the
theoretical and numerical behavior of NLSE solitons in simple domains, as reported in
prior studies such as those by Yang (2010). This confirms that our method preserves the
essential nonlinear physics even in geometrically challenging settings.

Test 4: Performance Comparison and Scalability

We compare the accuracy-efficiency trade-off of our high-order FEM (with p = 4)
against a standard second-order FEM (p = 1) and a pseudo-spectral Fourier method. The
test case is the propagation of a soliton in a simple periodic box, where the spectral method
is most competitive. The error is measured against a highly accurate reference solution
after a fixed simulation time.

Table 4. Performance comparison for achieving a target L?error of 1 X 107°.

‘ Method HDegrees of Freedom (Nd)H CPU Time (s) ” Memory (MB) |
| FEM(p=1) | 1,048,576 | 2852 | 840 |
| FEM(p=4) || 4,09 [ 8.1 I 25 |
[Pseudo-Spectral 16,384 | 5.5 | 55 |

The results demonstrate the dramatic advantage of high-order methods. To reach the
same target accuracy, the low-order FEM requires a mesh so fine that it leads to over 250
times more degrees of freedom and a 35x longer compute time than the p = 4FEM. The
pseudo-spectral method is slightly faster than the p = 4FEM on this simple domain, as
expected. However, its strength is also its major weakness that it cannot be applied to the
complex domains presented in Tests 2 and 3. This comparison highlights the fact that
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high-order FEM offers a combination of high accuracy and high degree of geometric
freedom.
The computational advantage is further analyzed with the help of a plot of the L?error
against the total CPU time for the three methods in figure 5.
Accuracy vs Computational Cost for NLSE Solvers
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Figure 5. Accuracy versus computational cost (CPU time).

The high-order FEM (p=4) achieves a steeper error reduction per unit of
computational time compared to low-order FEM (p=1). The pseudo-spectral method is
optimal only for the simple, periodic domain.

This plot reveals the time-to-solution efficiency. For any desired error tolerance below
approximately 1073, the high-order FEM becomes the most efficient method. The high-
order method reaches machine precision levels of error in less time than the low-order
method takes to reach an error of 10™%. The pseudo-spectral method, while efficient, is
included only for context on simple geometries.

Analysis of Conservation and Parallel Scalability

The preservation of the NLSE's invariants is critical for long-time simulation stability.
Figure 6 plots the relative deviation of the total mass Mand energy €(Equation 15) over
time for the soliton collision test (Test 3).
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Conservation Properties of High-Order FEM Framework for NLSE
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Figure 6. Conservation properties. Relative deviations of mass (blue) and energy

(red) over the simulation duration for Test 3.

Both are maintained near machine precision, demonstrating the excellent
conservation properties of the combined high-order spatial discretization and DIRK
temporal scheme.

The results confirm that our framework is numerically conservative. The fluctuations
in mass and energy are on the order of 10"*to 107*?, which is at the level of machine
precision for the double-precision arithmetic used. This exceptional conservation is
attributed to the consistency of the Galerkin formulation and the symplectic properties of
the chosen DIRK scheme.

Finally, we assess the parallel strong scaling efficiency of the framework
implementation in FEniCSx/dolfinx with PETSc. A fixed, large-scale problem (simulation
in a 3D spherical domain with N; = 2million) is solved on an increasing number of CPU
cores.

Parallel Strong Scallng Analysis of High-Order FEM Framework

Strong Scaling Parformance for 3D NISE Simulation Parallel Efficiency Analysis
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Figure 7. Parallel strong scaling efficiency. Speedup relative to a 16-core baseline for
a fixed 3D problem.

The framework demonstrates very good strong scaling up to 128 cores, achieving over
85% parallel efficiency. This indicates that the major computational kernels (matrix
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assembly, preconditioned Krylov solves) are effectively parallelized. The scaling
efficiency gradually declines at 256 cores, which is typical for sparse iterative solvers due
to the growing ratio of communication to computation. This confirms the framework's
suitability for large-scale, high-fidelity simulations on modern HPC clusters.

Discussion

As evidenced by the results from the previous section, the proposed high-order finite
element framework meets its main goal; producing an output with spectral-like precision
when applied to the nonlinear Schrodinger equation in geometrically complicated
regions. The interpretation of these results demonstrates a core interaction between the
mathematical traits of the discretisation's structures and the physical behaviour of those
structures in the system under question. The significance of the increase in accuracy,
particularly through the exponential *p*-convergence for smooth solutions, is directly
linked to the approximation ability of high-order polynomials and their resulting ability
to significantly lessen dispersion and diffusion error, which are natural to low-order
approaches, thus significantly reducing the rate of the loss of energy and improper phase
velocities of the travelling wave structures thus accelerating the destruction of those
coherent structures over prolonged periods of time. By reducing these errors, the
developed finite element framework maintains the Hamiltonian characteristic of the
nonlinear Schrodinger equation more closely, as demonstrated by the astonishingly
accurate preservation of mass and energy within a range of error close to that achieved
through the use of machine computations. While the flexibility in geometric design
afforded by an unstructured mesh is an important feature for many applications, it comes
at the cost of some key trade-offs associated with its use. When increasing the polynomial
order *p*, the errors are exponentially reduced for a fixed number of elements, but the
costs associated with a higher polynomial order also increases the cost per degree of
freedom. Higher-order quadrature is necessary for assembling matrices and nonlinear
residuals, and the condition number of the linear system grows poorly with an increase
in the polynomial order, which requires robust preconditioning strategies (like the
Jacobian-Free Newton-Krylov approach used in this study). The comparison of
performance found in Table 4 illustrates this trade-off, showing how, for a given target
accuracy, a higher polynomial order on a coarse mesh is significantly more efficient than
a lower polynomial order on a fine mesh when using solvers designed to accommodate
the significant numerical stiffening that can occur as a result of this trade-off.

There are three main benefits to this framework. The first advantage is that it is
geometrically adaptable and, therefore, sets the standard for high accuracy methods.
While most spectral-type numerical methods can only be implemented in a geometrical
domain that consists of simple coordinate-aligned 'BLOCKS', our method can be
implemented on a geometrical domain that has re-entrant corners, interior structures, and
other irregular types of boundaries, which often exist in photonic devices, biomedical
tissues, and manufacturing applications. The second benefit is that the accuracy of our
method is comparable to pseudo-spectral numerical methods on smooth problems (as
demonstrated by the exponential rate of convergence seen in Figure 1). The high accuracy
of the method remains constant when solving curved boundary problems using
isoparametric elements. This ensures that the fidelity of the numerical solution is
protected regardless of how complex the geometric domain is.

Lastly, our framework is also robust when solving non-linear problems. The time-
stepping scheme is implicit, thereby providing stability to the numerical computations,
and the Newton-type non-linear root-finders provide guaranteed and consistent
convergence rates, even when solving for a large number of non-linearities (as validated
by the soliton collision experiments performed in a constricted channel). Additionally, the
finite element method provides a very natural, straightforward way to create and solve a
wide variety of boundary conditions (e.g., dirichlet and neuton), including complex
boundary conditions, such as absorbing boundaries, simply by modifying the weak form
boundary integral terms.

Though it did demonstrate some positive attributes, there were also many limitations
for which attention was required for future research. The computational expense of
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extremely high polynomial orders (i.e., p > 8) may become sizeable, and therefore, would
be characterised by excess operating costs and increasing memory bandwidth usage due
not only to the use of more operations, but also a larger subtotal of data from all operations
in the form of dense elemental operations. Although p-refinement may be quite efficient
for different applications, the initial mesh generation for complex and irregular 3D
geometries, such as porous materials or vascular networks, remains a significant pre-
processing difficulty requiring external tools for generation. Moreover, although our
implicit method of time integration is stable, we are limited in the size of our time step
because we must sufficiently resolve the non-linear dynamics of the solution instead of
merely satisfying the stability condition; for instances in which the temporal behaviour
has significantly high frequency content, a large amount of data may accumulate because
of the need to have so many time steps. The approach we use of adaptive time stepping
may address this challenge, but it does not eliminate this fundamental scaling
characteristic. Finally, the performance of the preconitioner is paramount for enhancing
the computational efficiency of a solver; the performance is hindered for certain problems,
such as those that exhibit large variability of coefficients and potentials. This area for
improvement has been noted by many, including Pazner, who cites a number of high-
order problems that are experiencing difficulties with respect to the development of
auxiliary space preconditions [18].

In this article, we try to fill some holes that had been left open in another recent
research work and compare different types of numerical methods for non-linear
Schrodinger equation (NLSE). In their recent comparison paper of spectral element
methods (Vienna University) against other methods, Ahmed et al regretted the dilemma
of finding the right amount of accuracy and computational efficiency [19]. Our proposed
solution to this dilemma incorporates both of those findings and that gap by using both
spectral elements and a 100-percent adaptive mesh - what we believe is the best of both
worlds. While using spectral element methods, Henning and Jarlebring were able to
achieve a high level of accuracy through the use of very simple mesh decompositions,
which are less representative of irregular domains than our approach to using hp-
adaptive meshes for extremely irregular shapes. By contrast, we believe that the method
being utilized by Ge et al will be easier to implement using their isogeometric analysis
(IGA) framework and have a higher level of fidelity to the original CAD model than what
we can expect to get from using hp-adaptive meshes [2]. However, this ease of use may
come at the expense of not allowing for the same level of geometric accuracy in the final
product as the hp-adaptive meshes deliver. From a comparison with the conservation
results for the method reviewed by McLachlan and Stern, we find that we have
maintained a comparable level of accuracy in comparison to multi-symplectic integrators
while allowing greater flexibility when selecting the mesh discretization. Furthermore,
our results demonstrate parallel scalability consistent with current trends related to finite
element-based high performance computing, making our proposed approach very
applicable to large-scale applications [11].

Numerous areas of science and engineering have extended real-world examples of
the relevance of this research. It can assist researchers in designing and analyzing
accurately the physical characteristics of waveguides, photonic crystals, and optical
resonators with arbitrary cross-sections in photonics and optoelectronics by focusing on
how to confine light and account for nonlinear effects such as soliton generation. The
framework also gives a method to simulate Bose-Einstein condensates in traps of arbitrary
geometries and disorder potentials (quantum engineering and condensed matter physics),
model vortex dynamics, and investigate quantum turbulence in non-rectangular
geometries. In hydrodynamics, the NLSE provides a framework for modelling deep-sea
wave packets, making this perhaps one possible example of studying rogue waves in
ports or around complex coastal environments. Additionally, using a framework that
represents such complex domains may also enhance research in computational
biophysics, including in modelling exciton transport in fractal systems akin to those found
in photosynthetic systems, as well as in the modelling of biomolecules solvation.
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In the next phase of development, we will be expanding upon the current framework,
including improving the framework's performance (i.e., optimizing its use of numerical
methods). A key focus in the immediate future will be extending to using vector nonlinear
Schrodinger equations (e.g., the Manakov system), which are used to model systems with
multiple components within the fields of optics and spinor condensates; these extensions
bring new complexities regarding coupling and symmetry. While our testing of the
framework performed successfully demonstrated the ability to scale for three dimensions,
there are more extensive opportunities for the application of the method to three-
dimensional systems where complex geometry arises from medical or materials imaging.
Additionally, we are working towards developing a completely adaptive space-time
refinement method whereby the spatial and temporal refinement processes will be co-
adapted using a single error estimator; this will be a major advancement toward complete
optimization of computational resource use. We are also currently in the process of
migrating the core computational kernels so they can take advantage of GPU acceleration
to maximize the availability ofExascale computing resources for large-scale simulations.
Lastly, we are investigating how to integrate parameterized study model reduction
techniques or machine learning surrogates into the framework to improve the ability to
use the framework in design optimization and uncertainty quantification applications.

4. Conclusion

In It's broad form, this work describes a new high-order finite element (or "FE")
approach that accurately and efficiently solves nonlinear Schrodinger equations on
geometrically complex domains. To achieve this end goal: This new framework
incorporates multiple state-of-the-art computational methods: High-order continuous
Galerkin Spatial Discretization using unstructured meshes; an efficient, stable Diagonally
Implicit Runge-Kutta method for time integration; and an efficient, robust, Jacobian-Free
Newton-Krylov Algorithm to efficiently solve non-linear problems. As the methodology
of implementing the framework has been developed through a detailed series of
innovative numerical experiments, the methodology has been successfully validated to
meet the original design objectives. The original theoretical predictions about the method
were confirmed by the experimental results which demonstrated that, as expected, the
method produces smooth solutions with superior high-order and exponentially
converging rates of convergence for both simple and complex geometries including those
with re-entrant corners and internal obstacles. Most importantly, the mass and energy
conservation laws have been maintained to such an extent that physical accuracy remains
intact over long time frames for these solutions.

Based on the information given, there are two main benefits to the recommended
method. The framework has a distinct and significant synergy between the geometric
flexibility associated with traditional low-order finite element methods (FEMs), and the
spectral accuracy of high-order and spectral methods. The framework provides a synergy
that allows it to perform consistently better than conventional low-order FEMs on both
accuracy and computationally efficient methods when modelling wave-dominated events
in complex geometries. Detailed performance comparisons were conducted in order to
quantify this. The major contribution of this research therefore represents a unique
combination of these two paradigms, and effectively forms a bridge in the current state of
the art numerics tool available for the simulation of nonlinear wave equations, by
establishing a robust and scalable numerics tool that enables high-accuracy simulations
of wave-dominated systems in environments more sophisticated than basic Cartesian.

Overall, this research provides a framework for the computer models with the
potential for model building and discovery in many different fields of physics and
engineering. The computational model permits complexity to be taken into account while
ensuring high levels of accuracy, immediately making the model useful for existing
challenges in photonics, quantum gas dynamics, nonlinear fluid dynamics and
biomedical physics. To strengthen the impact of this development further, an open source
version of the software implementation of the framework will be made available. We
anticipate the adoption, use and believed expansion of the utility of this software through
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enhancement of this capability by the scientific computing community, and thus improve
the rate of development and dissemination of accurate simulations of nonlinear waves
through the fast-moving technologies/scientific fields in which these simulations can be
performed.
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