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Abstract: Traditional diagnostic techniques have been exposed as having several shortcomings
regarding sensitivity, scalability, and data protection due to COVID-19's widespread impact. A
centralized training strategy remains hampered by data-sharing limitations, privacy risks, and a
lack of trust between medical institutions despite deep learning's potential for accurate disease
identification in chest CT imaging. This study presents a federated deep learning framework based
on blockchain for privacy-aware diagnosis of COVID-19 via CT scans. A shared model can be
trained collaboratively and decentralized, without requiring patients' sensitive information to be
exchanged. In addition to homomorphic encryption, model gradients are also encrypted during
training to further maintain data confidentiality. To enhance the effectiveness of feature extraction
and classification, capsule networks and extreme learning machines are combined in an ensemble
learning strategy. In experiments across multiple feature extraction networks, the proposed
framework achieves very high recall, reflecting its high ability to detect COVID-19 cases while
maintaining reliable precision. Accordingly, the proposed framework offers a practical and reliable
solution for large-scale collaborative medical image analysis in pandemic situations that integrates
accuracy, privacy preservation, and security.
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Creative C Attributi . . .
Tove Tormons AR IOn Over a year after the first cases of Coronavirus (COVID-19) were reported, the virus
(CC BY) license

(https://creativecommons.org/l has spread massively and suddenly throughout the world. Thousands of people die from
icenses/by/4.0/) acute respiratory infections caused by Coronavirus [1]. COVID-19 detection remains a
high-priority task because of its highly contagious nature. This disease can be diagnosed
using swabs taken from the throat and nasopharynx. Sample errors and low viral loads
can affect diagnosis accuracy, however. A contrast is the antigen test, which despite its
speed has a poor sensitivity. It is also possible to detect infections on patients through
radiological studies, such as computed tomography (CT) of the chest and X-rays. A deep
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learning model can improve CTs and X-rays to detect different types of infections. To
increase the accuracy of deep learning models, a small set of infected samples can be used
to train and improve them. Despite the lack of training data, sensitivity and accuracy
remain difficult to predict. This problem can be solved best through federated learning. A
key component of federated learning is the collection of models from different sources and
their collaboration over a decentralized network [2]. Even so, health care centers lack
privacy-preserving strategies that prevent the sharing of such confidential data [3].

Author [4] proposed a distributed model to ensure privacy by allowing users to share
gradients. The methodology, however, could be exploited by passive attackers [5]. The
author developed a privacy-preserving gradient aggregation framework based on the
federated learning global model [6]. A author of [7] proposed threshold secret sharing
schemes as well as homomorphic encryption (HE). In terms of authenticity, the shared
model cannot provide any assurance. Moreover, there is still a trust issue between different
sources, resulting in poor data quality and model training. There have been several
successful applications of deep learning in healthcare. However, there is still a distrust
issue between different sources, which leads to poor data quality [8]. Using deep learning,
Covid-19 has been diagnosed with promising results. Covid-19 uses radiological imaging
as a primary diagnostic tool. The CT scan characteristics of Covid-19 patients (visual
symptoms) are similar to those of those with early ground-glass opacity and late lung
consolidation. Moreover, the lungs have a more peripheral distribution and a rounded
shape. In patients with viral pneumonia, CT scans are similar to those taken by those with
other infections or inflammatory diseases of the lungs. Consequently, radiologists
distinguish viral pneumonias from Covidl9 infections. Furthermore, advanced
technologies could automate Covid19 detection without compromising user privacy or
security.

It may not represent the whole population to segment the health information by
hospital systems. In biomedicine, federated learning has shown to be a promising strategy.
The limitations of limited training data and restricted data sharing can be overcome with
federated learning [9]. With multi-system federated learning, patient data is shared to
ensure more accurate results. Any party who has been granted permission to view and
audit blockchain records can take advantage of its transparency. Any blockchain record
falls under this category [10]. The healthcare sector is showing a lot of interest in blockchain
technology, along with cryptocurrencies. The Bitcoin digital currency uses blockchains to
store transaction information. Decentralization, transparency, integrity, and traceability
are all advantages of blockchain technology, which was first used in 2008. The blockchain
technology's supporters contend that it provides a secure means of managing data files by
using an immutable, decentralized ledger. These cutting-edge technologies can be applied
to a significant number of applications, including health care. Among the top ten
technologies recommended by the European Parliamentary Research Service for
combatting Covid-19 problems is blockchain. Blockchain technology could enable secure,
imputable monitoring of disease outbreaks to combat COVID-19.

2. Related Work

COVID-19 and other chest diseases are classified using machine learning, deep
learning, and fuzzy logic. In his study [11], Author evaluated all of the latest medical
imaging analytics techniques, including prediction, electronic therapy, stage classification,
and virtual monitoring. SVMs, DTs, KNNs, and ANNSs are supervised learning classifiers
used in medical imaging to detect chest diseases. As well as being vital for worldwide data
transfers, the BCT is also crucial for accessing medical records through a dispersed
network of blocks. According to the author, modern medical images are transmitted via a
technology that has recently become popular in the medical industry [11]. Author [12]
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proposed a decentralized FL architecture called Block FL, which stands for blockchain
federated learning by federating its reach, avoided single points of failure. Based on the
results of local training, devices can access public networks [13]. Gradient recording and
reward can be scaled by establishing a systematic library of off-chain recordings.

In a recent study [14], automated FL was shown to improve local ML model quality
and productivity using neural architecture search (NAS) and federated neural architecture
search (FedNAS). When using local ML models in a federated environment, the default
configuration did not perform well for clients without unique IDs (also known as non-
IIDs). An FL chain is an openly verified, centralized, and highly trustworthy FL ecosystem,
presented in [15]. Through the use of BCT, FL chains can be implemented without a central
FL coordinator. As a result of the author, a FL approach was proposed for patients with
COVID-19 [16]. CXR photographs of abnormal patients can be used to train neural
networks that can be used to recommend an electronic therapy based on the
recommendations of the neural network. A big data set cannot be used with the predictor
developed because of its limitations. Medical imaging is made easier with PriMIA, a free
and open-source software framework [17]. Based on FL, it categorizes pediatric radiology
from a variety of sources. As part of PriMIA, DCNN uses a trained pediatric CXR image
collection to classify cardiac illness stages. DCNN is trained using a gradient-based model
to detect chest infections at an early stage. An assessment of the quality of the research was
conducted according to the PRISMA guidelines [18]. A PRISMA-compliant literature
review ensures high levels of transparency and rigor. The systematic review process
contributes to systematic review process because it reduces bias, improves reporting
quality, and contributes to medical research. Artificial intelligence, deep learning, transfer
learning, and federated learning were included in the search, as were Coronavirus,
COVID-19, and artificial intelligence, deep learning, and transfer learning. COVID-19 has
clinical, epidemiological, and basic science components that have been overlooked. From
different publishers and preprints, we obtained a total of 11,700 papers about how DL and
FL are applied to COVID-19.

By combining federated learning with blockchain technology, trustable Al systems
can be built. The Author [19] proposes federated artificial intelligence based on
blockchains and Proof-of-Work consensus. According to the authors [20], a blockchain-
based peer-to-peer machine learning process could operate completely decentralized.
Using novel mining methods and blockchain-based federated learning processes, we have
developed a new framework for secure COVID-19 data analytics. An algorithm for global
aggregation that uses blockchain technology can protect against malicious devices,
according to the author [21]. Multi-edge servers implement a fault-tolerant consensus
protocol that prevents malicious servers from manipulating model data. With drones and
blockchains, federated learning enables secure accumulation through two-stage
authentication, as well as differential privacy protections [22].

3. Proposed Methodology
The system model will be analyzed after an overview of deep learning, federated
learning, homomorphic encryption, and blockchain-based federated learning.

3.1 Deep Learning

Figure 1 shows how the deep learning models are trained using feed forward and
back propagation algorithms. X and w represent the input and parameter vectors,
respectively, in the feed forward function defined as (x; w) = y". Each instance of (x;; y;)
uses D = (x;; ¥;); i € I asits training dataset. A loss function is represented by 1, while a
training dataset is represented by L(D; w) = ﬁzm: ypes! (yi, fX;, W)). Backpropagation

was carried out using stochastic gradient descent (SGD).
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Wt+1 - Wt _ ﬂAWL(Dt, Wt) (1)

In the case of hyperparameters, 7 is the learning rate, and 7 is the iteration vector. In

Equation 1, the standard training procedure for one hospital or user is shown using D‘as
the training dataset.

3.2 Federated Learning

Developing a shared model for healthcare could be easier with federated learning.
Additionally, federated learning allows hospitals to collect data from a variety of sources
without compromising privacy. By federating learning, resources (such as memory and
power) are reduced, and training quality is improved. Through federated learning, the
model is learned collaboratively and shared among machines. u € U users have private
datasets D, € D. In the following equation, D' = Uy, D with SGD is represented as a
mini-batch dataset

Lept y,t
t+1 Wt -7 Zusu VVTU(lDuJ w ) (2)

The local model is shared by each user to the blockchain distributed ledger so that it

w

can be trained to be shared globally. Updates to the global model are uploaded by hospitals
and users.

Fiw) = |DlZF(w,al,b) 3)
JeD;
The weights of data must be minimized using a global loss function F;(w, a;, b;)
when there is more than one device or hospital with dataset D [23]. Calculate the difference
between F;(w, a;, b;) and its estimated value based on the global model function of F(w)

) fiw,a, b)
Fw) = |M|Z”EF(W) IM,IZZ BT @

i€l j
The number of individual hospitals is represented by i and (a;, b;) respectively in a
hospital dataset model [28]. We aim to improve the accuracy of the model by minimizing
the loss function iteratively. Consider the loss function as follows:

ot = METEW ®
Pr(w; € Ry) < exp(€) Pr(w; € Ry) (6)
‘ At(i) < min(Ty, Ty, .., Ty) 7

i=1
In this example, Pr(w; € R;) < exp(€) Pr(w| € R,) stands for the confidentiality of
the users [24] and (T3, T>,..,T,) At(i),. The time taken for each iteration.

3.3 Cryptography Based on Homomorphism

Using cryptographic homomorphism, encrypted data (cipher text) can be calculated
without decryption. Decryption results in the new encrypted data matching the
unencrypted data's result. As a solution, we utilized the BGV [25] encryption scheme,
which takes a large amount of noise as input and outputs unencrypted data. Further, there
is a key-switching procedure that text-encrypts data. For readers, you can find details
about the encryption scheme here [26]. The gradients [27] were therefore encrypted using
homomorphic encryption for sharing in the blockchain network. Previously, the gradients
were encrypted and shared to a centralized server [28]. Blockchain networks that are
distributed are not considered. Blockchain databases solve a cost-effective problem. In this
way, we encrypt the local model and train it to the global model using homomorphic
encryption.

Before tensor encryption, some mini-batch datasets have matrices Z with a size of S *
T, and private key matrices with a size of S * S
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¢11¢12"'¢15
P21 0z2 Das ®)
Ds1Ds2" Dss
Mini-batch datasets can only be shared by users/participants
L) [@11812- P15 Z()
b || 02202207, 025 | | 42 ©)

L5y 051952 Dss Z(n)
A blockchain's vector data is shown by Z(i). An operator displays the product of two
cipher texts.

Ly = BinZay + PizZa) + -+ + DinZs) (10)
Thus, the linear transformation maintains low rank functionality. Homomorphic
encryption with a private key can be seen in functions @;; € [0; 1),and X ;-1 ¥;; = 1.

3.4 Blockchain-Enabled Federated Learning

Gathering data from multiple sources is crucial to training the best AI model for
industry 4.0 without compromising user privacy. The global Al model is therefore updated
using federated learning and blockchain technology. Data models from local and global
sources can be aggregated using blockchain technology.

A smart contract updates models and uploads weights. Decentralization and
enhanced security are achieved through the integration of blockchain technology and
federated learning in this proposed architecture. Furthermore, decentralization makes the
model more accurate and prevents poisoning attacks. Federated learning still has some
issues, including insufficient incentives and poisoning attacks. Thus, some researchers
develop the blockchain from a federated learning perspective [29], [30]. Similarly, design
a technique to protect privacy. In previous studies, the encryption technique was not
included with the gradient sharing of blockchain models, which created a major problem.
Gradient aggregation using directed acyclic graphs and Proof-of-Work consensus
algorithms is presented in the paper. Moreover, the work is entirely decentralized, and the
privacy of the users is not compromised in any way.

3.4.1 Data Normalization

Using the technique described in [30], the proposed study normalizes the data. Since
the data is heterogeneous, the proposed federated learning models require strong
normalization methods. A CT scan image is normalized by adjusting both its signal and
its spatial characteristics. Medical practices commonly use two types of windows in CT
scans because of the Hounsfield units (HU). Using this window size, equation 1 calculates
the normalized value.

o—WL
W (11)

An image with a normalized intensity is called Normalized, and an image with an
original intensity is called O. An experiment has been conducted using [0.01, 0.5] as the
lower bound window size.

Onormalized =

3.4.2  Spatial Normalization Technique

Using CT scan images of various dimensions and resolutions, spatial normalization
is adopted. CT scan images are always 332 x 332 x 512 mma3 in resolution according to CT
scan protocol [30]. A standardization process involves converting all datasets and images
into federated learning-compatible formats. As a result, it improves learning and
performance.

3.4.3 Model Training Using Ensemble Capsules
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A strong feature extraction layer and classification mechanism have made deep
learning popular over the past few years. To classify images, convolutional neural
networks (CNNs) have become increasingly popular. In feature-space CNNs, spatial
relationships between features are not taken into account, which can increase computation
complexity and affect the performance of the classifier. Through the combination of
capsule networks and extreme learning machines (ELMs), it improves classification
accuracy and diagnosis.

The COVID-19 is better predicted using ELM instead of traditional dense
classification layers based on a capsule network that extracts strong feature maps.

3.4.4  Capsule Networks

As a solution, a capsule network with 50 layers (convolutional layer (1), hidden layer
(2), primary cap (3), and direct cap (4)) was used to overcome the limitation. Capsule
networks use normalized input images as inputs. A two-phase process is involved.

e  Entity's likelihood of existing.
° Parameters used to instantiate entities.

Equation (12) encodes the spatial relationship between low-level and high-level

"n_n

features by means of input vectors "s" and weight matrices "W" and "U".
B@.j) =W = DUGJ) *S; (12)
Using equation (13), we can calculate the capsule "D" based on the sum of weighted
input vectors

SG) = ) BN *DO) (13)
J

In equation (14) nonlinearity is accounted for by squashing.
B(i,j) =W, ;U@ J) *S; (14)
As the test results are analyzed, it is gradually adjusted to ensure that low-level
capsules are distributed evenly between high-level capsules.

3.5 Federated Learning for Global Training

The following sections provide detailed information on how multiple hospitals can
share data decentralized. The proposed model allows hospitals to share their models
without compromising privacy, and the models are aggregated using federated learning.
Hospitals are represented by H, and datasets are represented by d. In a federated model,
ensemble learning is viewed as a global model M where weights W are distributed
randomly among hospitals.

Using blockchain technology, a collaborative framework can train and share
knowledge [31]. Within the hospital's federated learning model, local and global weights
are integrated [32]. As a starting point, CT scan data from multiple sources are gathered
into a local model and normalized accordingly. In an ensemble capsule network, the data
and images are normalized and segmented to identify a COVID-19 suspect. Blockchain
networks are used to distribute local model weights for global models.

The number of hospitals is represented by d, which represents the total dataset
including both training and testing datasets.

Dfrem = {(Af*™, Bf" @™ )\Wherej = 1toN — train data (15)

As shown in equation 16, testing data is also represented as follows:

Dft = {(A;*™, BI"*™)Wherej = 1toN — train data (16)

A global model is therefore trained using the dataset presented in equation 10.

D(i) = Dfrn yptest (17)

A heterogeneous group of hospitals collects the D (i) data, so the distribution of data
remains unequal. ELM weights W are distributed among hospitals in every round of
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communication. In the blockchain network, hospitals create local models based on weights
obtained and stored. Each round, new weights are loaded into the blockchain network.
Equation (18) determines how weights should be updated mathematically.
n=w—w (18)
Suppose w' and w! are global and local weights, respectively. As a last step, the ELM-
based deep learning algorithm is developed by aggregating all the local models in the
blockchain.

3.6 Blockchain-Based Data Retrieval Process

In a block chain network, each hospital provides the data (local models) as a
transaction [33]. Data retrieval from the nodes is based on two parameters, namely
distance (d) and hospital identification (ID). Hospitals are assigned unique IDs based on
their distance from each other. Blockchains maintain log tables to store unique hospital
IDs. Hospitals in the neighbourhood are identified by their unique IDs, which are used to
retrieve the data.

A hospital is represented mathematically by an X, which represents the different
communities in which it is located. Equation (19) gives the expression for neighbourhood
distance between nodes

AADAD) =), ADUAG) = ADRA)
Attributes of the Nodes/z {AGDUA()} * (19)
1€

Attributes of Nodes xlog(A(), A(j))
Hospitals A(;) and Aj)are the unique IDs of i*" and j** two neighbouring hospitals

The sharing of data between requester and source hospitals requires a high level of
security. A hospital can only share learned models with requesters instead of sharing the
entire data set. Federated data is used for the consensus algorithm, which allows hospitals
to communicate with one another. Blockchain nodes store the data of providers and
requesters.

4. Result and Discussion

The table presents a comparison of precision across various feature extraction
networks. Results show that AlexNet and ResNet50 deliver the highest precision score of
0.833, indicating a slightly stronger ability to correctly identify positive samples with fewer
false alarms. DenseNet121 (0.832) and DenseNet169 (0.831) also perform well, benefiting
from their dense feature propagation and efficient information reuse. In contrast,
traditional architectures such as VGG16 (0.8269) and VGG19 (0.827) exhibit marginally
lower precision, suggesting reduced discriminative power compared with deeper or more
refined models. Lightweight networks like MobileNet and MobileNetV2 maintain
consistent precision values in the range of 0.828-0.830, highlighting their effectiveness in
achieving reliable performance with lower computational cost. Overall, the proposed
model attains a precision of 0.83, closely matching the performance of leading architectures
and demonstrating its capability to provide dependable and robust predictions.
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Figure 1: Precision Comparison of Different Feature Extraction Networks.

Figure 2 summarizes the recall performance of different feature extraction networks,
highlighting their ability to correctly identify positive cases. Among the conventional
models, MobileNet (0.912) and DenseNet121 (0.903) achieve the highest recall,
demonstrating strong sensitivity in capturing relevant features. Xception V1 (0.894) and
DenseNet169 (0.886) also show robust performance, indicating effective representation
learning. In contrast, ResNet50 (0.771) records the lowest recall, suggesting a higher rate
of missed detections. Classical architectures such as VGG16 (0.8294) and VGG19 (0.8616)
deliver moderate recall values, reflecting stable but less optimized sensitivity. Notably, the
proposed model achieves a recall of 0.987, significantly outperforming all baseline
networks, which confirms its superior capability to detect positive instances with minimal

false negatives.
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Figure 2: Recall Comparison of Different Feature Extraction Networks.
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Figure 3 compares the specificity performance of different feature extraction
networks, reflecting their ability to correctly identify negative cases. Among the baseline
models, ResNet50 achieves the highest specificity value of 0.249, indicating a stronger
capability to reduce false positives compared with other networks. AlexNet (0.191) and
ResNet50 V2 (0.166) also show relatively better specificity, while architectures such as
VGG16 (0.1561), Inception V3 (0.159), and DenseNet201 (0.152) demonstrate moderate
performance. Lightweight models, particularly MobileNet (0.089), exhibit lower
specificity, suggesting a higher tendency to misclassify negative samples. Notably, the
proposed model records a very low specificity of 0.004, which indicates that it is highly
biased toward identifying positive cases. This behavior aligns with its exceptionally high
recall, emphasizing sensitivity over specificity and making it more suitable for applications
where minimizing missed detections is prioritized over false alarms.
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Figure 3: Networks for Feature Extraction: Comparison of Specificity.

According to Figure 4, different feature extraction networks perform differently in
terms of accuracy. VGG16 achieves the highest accuracy of 0.8281, indicating strong overall
classification capability among the evaluated models. ResNet50 (0.6735) also performs
relatively well, benefiting from residual learning that supports stable feature
representation. Most other deep architectures, including AlexNet, Inception V3, and
ResNet50 V2, attain moderate accuracy values around 0.59-0.60, reflecting balanced but
less optimal performance. Lightweight and densely connected models such as MobileNet,
DenseNet121, and DenseNetl69 show comparatively lower accuracy, suggesting
limitations in capturing discriminative global features for this task. The proposed model
records an accuracy of 0.4628, which is lower than the baseline networks; however, this
outcome is consistent with its design emphasis on maximizing recall, indicating a
deliberate trade-off where sensitivity is prioritized over overall accuracy.
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Figure 4: Accuracy Comparison of Different Feature Extraction Networks.

5. Conclusion

In this study, a blockchain-federated deep learning framework was developed to

detect COVID-19 from chest CT images. A multi-hospital diagnostic model can be jointly
developed by integrating federated learning, blockchain infrastructure, and homomorphic
encryption. A capsule-based ensemble architecture improves feature extraction and
classification by capturing spatial relationships within medical images effectively. Based
on experimental results, the proposed model achieves notably higher recall than
conventional deep learning methods, which emphasizes its ability to reduce missed
detections of COVID-19. Despite a trade-off between sensitivity and specificity, this
approach aligns well with clinical screening requirements that require reliable
identification early in the process. The proposed framework offers a scalable, privacy-
preserving, and trustworthy framework for collaborative medical diagnosis, as well as
providing a solid foundation for future intelligent healthcare systems that depend on
secure inter institutional cooperation.
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