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Abstract: Traditional diagnostic techniques have been exposed as having several shortcomings 

regarding sensitivity, scalability, and data protection due to COVID-19's widespread impact. A 

centralized training strategy remains hampered by data-sharing limitations, privacy risks, and a 

lack of trust between medical institutions despite deep learning's potential for accurate disease 

identification in chest CT imaging. This study presents a federated deep learning framework based 

on blockchain for privacy-aware diagnosis of COVID-19 via CT scans. A shared model can be 

trained collaboratively and decentralized, without requiring patients' sensitive information to be 

exchanged. In addition to homomorphic encryption, model gradients are also encrypted during 

training to further maintain data confidentiality. To enhance the effectiveness of feature extraction 

and classification, capsule networks and extreme learning machines are combined in an ensemble 

learning strategy. In experiments across multiple feature extraction networks, the proposed 

framework achieves very high recall, reflecting its high ability to detect COVID-19 cases while 

maintaining reliable precision. Accordingly, the proposed framework offers a practical and reliable 

solution for large-scale collaborative medical image analysis in pandemic situations that integrates 

accuracy, privacy preservation, and security. 

 

 

Keywords: Blockchain Technology, COVID-19 Detection, Federated Learning, Privacy-Preserving, 

Medical Imaging. 

1. Introduction 

Over a year after the first cases of Coronavirus (COVID-19) were reported, the virus 

has spread massively and suddenly throughout the world. Thousands of people die from 

acute respiratory infections caused by Coronavirus [1]. COVID-19 detection remains a 

high-priority task because of its highly contagious nature. This disease can be diagnosed 

using swabs taken from the throat and nasopharynx. Sample errors and low viral loads 

can affect diagnosis accuracy, however. A contrast is the antigen test, which despite its 

speed has a poor sensitivity. It is also possible to detect infections on patients through 

radiological studies, such as computed tomography (CT) of the chest and X-rays. A deep 
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learning model can improve CTs and X-rays to detect different types of infections. To 

increase the accuracy of deep learning models, a small set of infected samples can be used 

to train and improve them. Despite the lack of training data, sensitivity and accuracy 

remain difficult to predict. This problem can be solved best through federated learning. A 

key component of federated learning is the collection of models from different sources and 

their collaboration over a decentralized network [2]. Even so, health care centers lack 

privacy-preserving strategies that prevent the sharing of such confidential data [3]. 

Author [4] proposed a distributed model to ensure privacy by allowing users to share 

gradients. The methodology, however, could be exploited by passive attackers [5]. The 

author developed a privacy-preserving gradient aggregation framework based on the 

federated learning global model [6]. A author of [7] proposed threshold secret sharing 

schemes as well as homomorphic encryption (HE). In terms of authenticity, the shared 

model cannot provide any assurance. Moreover, there is still a trust issue between different 

sources, resulting in poor data quality and model training. There have been several 

successful applications of deep learning in healthcare. However, there is still a distrust 

issue between different sources, which leads to poor data quality [8]. Using deep learning, 

Covid-19 has been diagnosed with promising results. Covid-19 uses radiological imaging 

as a primary diagnostic tool. The CT scan characteristics of Covid-19 patients (visual 

symptoms) are similar to those of those with early ground-glass opacity and late lung 

consolidation. Moreover, the lungs have a more peripheral distribution and a rounded 

shape. In patients with viral pneumonia, CT scans are similar to those taken by those with 

other infections or inflammatory diseases of the lungs. Consequently, radiologists 

distinguish viral pneumonias from Covid19 infections. Furthermore, advanced 

technologies could automate Covid19 detection without compromising user privacy or 

security. 

It may not represent the whole population to segment the health information by 

hospital systems. In biomedicine, federated learning has shown to be a promising strategy. 

The limitations of limited training data and restricted data sharing can be overcome with 

federated learning [9]. With multi-system federated learning, patient data is shared to 

ensure more accurate results. Any party who has been granted permission to view and 

audit blockchain records can take advantage of its transparency. Any blockchain record 

falls under this category [10]. The healthcare sector is showing a lot of interest in blockchain 

technology, along with cryptocurrencies. The Bitcoin digital currency uses blockchains to 

store transaction information. Decentralization, transparency, integrity, and traceability 

are all advantages of blockchain technology, which was first used in 2008. The blockchain 

technology's supporters contend that it provides a secure means of managing data files by 

using an immutable, decentralized ledger. These cutting-edge technologies can be applied 

to a significant number of applications, including health care. Among the top ten 

technologies recommended by the European Parliamentary Research Service for 

combatting Covid-19 problems is blockchain. Blockchain technology could enable secure, 

imputable monitoring of disease outbreaks to combat COVID-19. 

 

2. Related Work 

 COVID-19 and other chest diseases are classified using machine learning, deep 

learning, and fuzzy logic. In his study [11], Author evaluated all of the latest medical 

imaging analytics techniques, including prediction, electronic therapy, stage classification, 

and virtual monitoring. SVMs, DTs, KNNs, and ANNs are supervised learning classifiers 

used in medical imaging to detect chest diseases. As well as being vital for worldwide data 

transfers, the BCT is also crucial for accessing medical records through a dispersed 

network of blocks. According to the author, modern medical images are transmitted via a 

technology that has recently become popular in the medical industry [11]. Author [12] 
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proposed a decentralized FL architecture called Block FL, which stands for blockchain 

federated learning by federating its reach, avoided single points of failure. Based on the 

results of local training, devices can access public networks [13]. Gradient recording and 

reward can be scaled by establishing a systematic library of off-chain recordings. 

In a recent study [14], automated FL was shown to improve local ML model quality 

and productivity using neural architecture search (NAS) and federated neural architecture 

search (FedNAS). When using local ML models in a federated environment, the default 

configuration did not perform well for clients without unique IDs (also known as non-

IIDs). An FL chain is an openly verified, centralized, and highly trustworthy FL ecosystem, 

presented in [15]. Through the use of BCT, FL chains can be implemented without a central 

FL coordinator. As a result of the author, a FL approach was proposed for patients with 

COVID-19 [16]. CXR photographs of abnormal patients can be used to train neural 

networks that can be used to recommend an electronic therapy based on the 

recommendations of the neural network. A big data set cannot be used with the predictor 

developed because of its limitations. Medical imaging is made easier with PriMIA, a free 

and open-source software framework [17]. Based on FL, it categorizes pediatric radiology 

from a variety of sources. As part of PriMIA, DCNN uses a trained pediatric CXR image 

collection to classify cardiac illness stages. DCNN is trained using a gradient-based model 

to detect chest infections at an early stage. An assessment of the quality of the research was 

conducted according to the PRISMA guidelines [18]. A PRISMA-compliant literature 

review ensures high levels of transparency and rigor. The systematic review process 

contributes to systematic review process because it reduces bias, improves reporting 

quality, and contributes to medical research. Artificial intelligence, deep learning, transfer 

learning, and federated learning were included in the search, as were Coronavirus, 

COVID-19, and artificial intelligence, deep learning, and transfer learning. COVID-19 has 

clinical, epidemiological, and basic science components that have been overlooked. From 

different publishers and preprints, we obtained a total of 11,700 papers about how DL and 

FL are applied to COVID-19. 

By combining federated learning with blockchain technology, trustable AI systems 

can be built. The Author [19] proposes federated artificial intelligence based on 

blockchains and Proof-of-Work consensus. According to the authors [20], a blockchain-

based peer-to-peer machine learning process could operate completely decentralized. 

Using novel mining methods and blockchain-based federated learning processes, we have 

developed a new framework for secure COVID-19 data analytics. An algorithm for global 

aggregation that uses blockchain technology can protect against malicious devices, 

according to the author [21]. Multi-edge servers implement a fault-tolerant consensus 

protocol that prevents malicious servers from manipulating model data. With drones and 

blockchains, federated learning enables secure accumulation through two-stage 

authentication, as well as differential privacy protections [22]. 

 

3. Proposed Methodology 

The system model will be analyzed after an overview of deep learning, federated 

learning, homomorphic encryption, and blockchain-based federated learning. 

3.1 Deep Learning 

Figure 1 shows how the deep learning models are trained using feed forward and 

back propagation algorithms. X and w represent the input and parameter vectors, 

respectively, in the feed forward function defined as (𝑥; 𝑤)  =  𝑦¯. Each instance of (𝑥𝑖 ;  𝑦𝑖) 

uses 𝐷 =  (𝑥𝑖 ;  𝑦𝑖);  𝑖 ∈  𝐼 as its training dataset. A loss function is represented by l, while a 

training dataset is represented by 𝐿(𝐷;𝑤)  =  
1

|𝐷|
∑ 𝑙(𝑥𝑖; 𝑦𝑖)∈𝑆 (𝑦𝑖 , 𝑓(𝑋𝑖 ,𝑊)). Backpropagation 

was carried out using stochastic gradient descent (SGD). 
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𝑊𝑡+1 ← 𝑊𝑡 − 𝜂∆𝑤𝐿(𝐷𝑡 ,𝑊𝑡)                                                        (1) 

In the case of hyperparameters, 𝜂 is the learning rate, and 𝜂 is the iteration vector. In 

Equation 1, the standard training procedure for one hospital or user is shown using 𝐷𝑡as 

the training dataset. 

3.2 Federated Learning 

Developing a shared model for healthcare could be easier with federated learning. 

Additionally, federated learning allows hospitals to collect data from a variety of sources 

without compromising privacy. By federating learning, resources (such as memory and 

power) are reduced, and training quality is improved. Through federated learning, the 

model is learned collaboratively and shared among machines. 𝑢 ∈  𝑈 users have private 

datasets 𝐷𝑢 ⊆ 𝐷. In the following equation, 𝐷𝑡 = 𝑈𝑢∈𝑈𝐷𝑢
𝑡   with SGD is represented as a 

mini-batch dataset 

𝑤𝑡+1 ← 𝑤𝑡 − 𝜂
∑ ∇𝑤𝐿(𝐷𝑢

𝑡 , 𝑤𝑡)𝑢𝜖𝑢

|𝑈|
                                                   (2) 

The local model is shared by each user to the blockchain distributed ledger so that it 

can be trained to be shared globally. Updates to the global model are uploaded by hospitals 

and users. 

𝐹𝑖(𝑤) =
1

|𝐷𝑖|
∑ 𝐹𝑖(𝑤, 𝑎𝑖 , 𝑏𝑖)

𝑗∈𝐷𝑖

                                                       (3) 

The weights of data must be minimized using a global loss function 𝐹𝑖(𝑤, 𝑎𝑖 , 𝑏𝑖)  

when there is more than one device or hospital with dataset D [23]. Calculate the difference 

between 𝐹𝑖(𝑤, 𝑎𝑖 , 𝑏𝑖) and its estimated value based on the global model function of 𝐹(𝑤) 

𝐹(𝑤) =
1

|𝑀𝐼|
∑𝑢𝑖 . 𝐹𝑖(𝑤) =

1

|𝑀𝐼|
∑ ∑ 𝑢𝑖 .

𝑓𝑖(𝑤, 𝑎𝑖 , 𝑏𝑖)

|𝐷𝑖|
 

𝑗∈𝐷𝑖𝑖∈𝐼𝑖∈𝐼

                        (4) 

The number of individual hospitals is represented by i and (𝑎𝑖 , 𝑏𝑖) respectively in a 

hospital dataset model [28]. We aim to improve the accuracy of the model by minimizing 

the loss function iteratively. Consider the loss function as follows: 

𝑄(𝑤, 𝑡) =
arg𝑚𝑖𝑛𝐹(𝑤)
𝑖 ∈ 𝐼, 𝑡 ≤ 𝑇

                                                          (5) 

Pr(𝑤𝑖 ∈ 𝑅𝑑) ≤ exp(∈) 𝑃𝑟(𝑤𝑖
′ ∈ ℝ𝑑)                                             (6) 

∑ ∆𝑡(𝑖) ≤ min(𝑇1, 𝑇2, . . , 𝑇𝑛)
𝑡

𝑖=1
                                                   (7) 

In this example, Pr(𝑤𝑖 ∈ 𝑅𝑑) ≤ exp(∈) 𝑃𝑟(𝑤𝑖
′ ∈ ℝ𝑑) stands for the confidentiality of 

the users [24] and  (𝑇1, 𝑇2, . . , 𝑇𝑛) ∆𝑡(𝑖),.  The time taken for each iteration. 

3.3 Cryptography Based on Homomorphism 

Using cryptographic homomorphism, encrypted data (cipher text) can be calculated 

without decryption. Decryption results in the new encrypted data matching the 

unencrypted data's result. As a solution, we utilized the BGV [25] encryption scheme, 

which takes a large amount of noise as input and outputs unencrypted data. Further, there 

is a key-switching procedure that text-encrypts data. For readers, you can find details 

about the encryption scheme here [26]. The gradients [27] were therefore encrypted using 

homomorphic encryption for sharing in the blockchain network. Previously, the gradients 

were encrypted and shared to a centralized server [28]. Blockchain networks that are 

distributed are not considered. Blockchain databases solve a cost-effective problem. In this 

way, we encrypt the local model and train it to the global model using homomorphic 

encryption. 

Before tensor encryption, some mini-batch datasets have matrices Z with a size of 𝑆 ∗

𝑇, and private key matrices with a size of 𝑆 ∗  𝑆  
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[
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]                                                                  (8) 

Mini-batch datasets can only be shared by users/participants 
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                                                    (9) 

A blockchain's vector data is shown by 𝑍(𝑖). An operator displays the product of two 

cipher texts. 

ℤ(1) = ∅𝑖1𝑍(1) + ∅𝑖2𝑍(2) + ⋯+ ∅𝑖𝑁𝑍(𝑆)                                          (10) 

Thus, the linear transformation maintains low rank functionality. Homomorphic 

encryption with a private key can be seen in functions ∅𝑖𝑗 ∈ [0;  1), and ∑ 𝜓𝑖,𝑗𝑗=1 = 1. 

3.4 Blockchain-Enabled Federated Learning 

Gathering data from multiple sources is crucial to training the best AI model for 

industry 4.0 without compromising user privacy. The global AI model is therefore updated 

using federated learning and blockchain technology. Data models from local and global 

sources can be aggregated using blockchain technology. 

A smart contract updates models and uploads weights. Decentralization and 

enhanced security are achieved through the integration of blockchain technology and 

federated learning in this proposed architecture. Furthermore, decentralization makes the 

model more accurate and prevents poisoning attacks. Federated learning still has some 

issues, including insufficient incentives and poisoning attacks. Thus, some researchers 

develop the blockchain from a federated learning perspective [29], [30]. Similarly, design 

a technique to protect privacy. In previous studies, the encryption technique was not 

included with the gradient sharing of blockchain models, which created a major problem. 

Gradient aggregation using directed acyclic graphs and Proof-of-Work consensus 

algorithms is presented in the paper. Moreover, the work is entirely decentralized, and the 

privacy of the users is not compromised in any way. 

3.4.1 Data Normalization 

Using the technique described in [30], the proposed study normalizes the data. Since 

the data is heterogeneous, the proposed federated learning models require strong 

normalization methods. A CT scan image is normalized by adjusting both its signal and 

its spatial characteristics. Medical practices commonly use two types of windows in CT 

scans because of the Hounsfield units (HU). Using this window size, equation 1 calculates 

the normalized value. 

𝑂𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑜 − 𝑊𝐿

𝑊𝑊
                                                       (11) 

An image with a normalized intensity is called Normalized, and an image with an 

original intensity is called O. An experiment has been conducted using [0.01, 0.5] as the 

lower bound window size. 

3.4.2 Spatial Normalization Technique 

Using CT scan images of various dimensions and resolutions, spatial normalization 

is adopted. CT scan images are always 332 x 332 x 512 mm3 in resolution according to CT 

scan protocol [30]. A standardization process involves converting all datasets and images 

into federated learning-compatible formats. As a result, it improves learning and 

performance. 

3.4.3 Model Training Using Ensemble Capsules 
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A strong feature extraction layer and classification mechanism have made deep 

learning popular over the past few years. To classify images, convolutional neural 

networks (CNNs) have become increasingly popular. In feature-space CNNs, spatial 

relationships between features are not taken into account, which can increase computation 

complexity and affect the performance of the classifier. Through the combination of 

capsule networks and extreme learning machines (ELMs), it improves classification 

accuracy and diagnosis. 

 The COVID-19 is better predicted using ELM instead of traditional dense 

classification layers based on a capsule network that extracts strong feature maps. 

3.4.4 Capsule Networks 

As a solution, a capsule network with 50 layers (convolutional layer (1), hidden layer 

(2), primary cap (3), and direct cap (4)) was used to overcome the limitation. Capsule 

networks use normalized input images as inputs. A two-phase process is involved. 

• Entity's likelihood of existing. 

• Parameters used to instantiate entities. 

Equation (12) encodes the spatial relationship between low-level and high-level 

features by means of input vectors "s" and weight matrices "W" and "U". 

𝐵(𝑖. 𝑗) = 𝑊 − (𝑖, 𝑗)𝑈(𝑖, 𝑗) ∗ 𝑆𝑗                                                      (12) 

Using equation (13), we can calculate the capsule "D" based on the sum of weighted 

input vectors 

𝑆(𝑗) = ∑ 𝐵(𝑖, 𝑗) ∗ 𝐷(𝑗)

𝑗

                                                          (13) 

In equation (14) nonlinearity is accounted for by squashing. 

𝐵(𝑖, 𝑗) = 𝑊𝑖,𝑗𝑈(𝑖, 𝑗) ∗ 𝑆𝑗                                                            (14) 

As the test results are analyzed, it is gradually adjusted to ensure that low-level 

capsules are distributed evenly between high-level capsules. 

3.5 Federated Learning for Global Training 

The following sections provide detailed information on how multiple hospitals can 

share data decentralized. The proposed model allows hospitals to share their models 

without compromising privacy, and the models are aggregated using federated learning. 

Hospitals are represented by H, and datasets are represented by d. In a federated model, 

ensemble learning is viewed as a global model M where weights W are distributed 

randomly among hospitals. 

Using blockchain technology, a collaborative framework can train and share 

knowledge [31]. Within the hospital's federated learning model, local and global weights 

are integrated [32]. As a starting point, CT scan data from multiple sources are gathered 

into a local model and normalized accordingly. In an ensemble capsule network, the data 

and images are normalized and segmented to identify a COVID-19 suspect. Blockchain 

networks are used to distribute local model weights for global models. 

The number of hospitals is represented by d, which represents the total dataset 

including both training and testing datasets. 

𝐷𝑖
𝑡𝑟𝑎𝑖𝑛 = {(𝐴𝑖,𝑗

𝑡𝑟𝑎𝑖𝑛 , 𝐵𝑖,𝑗
𝑡𝑟𝑎𝑖𝑛)}𝑊ℎ𝑒𝑟𝑒𝑗 = 1𝑡𝑜𝑁 − 𝑡𝑟𝑎𝑖𝑛 𝑑𝑎𝑡𝑎                       (15) 

As shown in equation 16, testing data is also represented as follows: 

𝐷𝑖,𝑗
𝑡𝑒𝑠𝑡 = {(𝐴𝑖,𝑗

𝑡𝑟𝑎𝑖𝑛 , 𝐵𝑖,𝑗
𝑡𝑟𝑎𝑖𝑛)}𝑊ℎ𝑒𝑟𝑒𝑗 = 1𝑡𝑜𝑁 − 𝑡𝑟𝑎𝑖𝑛 𝑑𝑎𝑡𝑎                         (16) 

A global model is therefore trained using the dataset presented in equation 10. 

𝐷(𝑖) = 𝐷𝑖
𝑡𝑟𝑎𝑖𝑛   𝑈𝐷𝑖

𝑡𝑒𝑠𝑡                                                                (17) 

A heterogeneous group of hospitals collects the 𝐷(𝑖) data, so the distribution of data 

remains unequal. ELM weights W are distributed among hospitals in every round of 
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communication. In the blockchain network, hospitals create local models based on weights 

obtained and stored. Each round, new weights are loaded into the blockchain network. 

Equation (18) determines how weights should be updated mathematically. 

𝜂 = 𝑤𝑖 − 𝑤𝑙                                                                     (18) 

Suppose 𝑤𝑖  and 𝑤1 are global and local weights, respectively. As a last step, the ELM-

based deep learning algorithm is developed by aggregating all the local models in the 

blockchain. 

3.6 Blockchain-Based Data Retrieval Process 

In a block chain network, each hospital provides the data (local models) as a 

transaction [33].   Data retrieval from the nodes is based on two parameters, namely 

distance (d) and hospital identification (ID). Hospitals are assigned unique IDs based on 

their distance from each other. Blockchains maintain log tables to store unique hospital 

IDs. Hospitals in the neighbourhood are identified by their unique IDs, which are used to 

retrieve the data. 

A hospital is represented mathematically by an X, which represents the different 

communities in which it is located. Equation (19) gives the expression for neighbourhood 

distance between nodes 

𝑑(𝐴(𝑖), 𝐴(𝑗)) = ∑ {𝐴(𝑖)𝑈𝐴(𝑗) − 𝐴(𝑖)𝑛𝐴(𝑗)}
𝑝,1,𝜖

   

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑁𝑜𝑑𝑒𝑠/∑ {𝐴(𝑖)𝑈𝐴(𝑗)} ∗
𝑝,1,𝜖

                                  (19) 

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝑜𝑓 𝑁𝑜𝑑𝑒𝑠 ∗ log(𝐴(𝑖), 𝐴(𝑗)) 

Hospitals 𝐴(𝑖) and 𝐴(𝑗)are the unique IDs of 𝑖𝑡ℎ and 𝑗𝑡ℎ two neighbouring hospitals 

The sharing of data between requester and source hospitals requires a high level of 

security. A hospital can only share learned models with requesters instead of sharing the 

entire data set. Federated data is used for the consensus algorithm, which allows hospitals 

to communicate with one another. Blockchain nodes store the data of providers and 

requesters. 

4. Result and Discussion 

The table presents a comparison of precision across various feature extraction 

networks. Results show that AlexNet and ResNet50 deliver the highest precision score of 

0.833, indicating a slightly stronger ability to correctly identify positive samples with fewer 

false alarms. DenseNet121 (0.832) and DenseNet169 (0.831) also perform well, benefiting 

from their dense feature propagation and efficient information reuse. In contrast, 

traditional architectures such as VGG16 (0.8269) and VGG19 (0.827) exhibit marginally 

lower precision, suggesting reduced discriminative power compared with deeper or more 

refined models. Lightweight networks like MobileNet and MobileNetV2 maintain 

consistent precision values in the range of 0.828–0.830, highlighting their effectiveness in 

achieving reliable performance with lower computational cost. Overall, the proposed 

model attains a precision of 0.83, closely matching the performance of leading architectures 

and demonstrating its capability to provide dependable and robust predictions. 
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Figure 1: Precision Comparison of Different Feature Extraction Networks. 

 

Figure 2 summarizes the recall performance of different feature extraction networks, 

highlighting their ability to correctly identify positive cases. Among the conventional 

models, MobileNet (0.912) and DenseNet121 (0.903) achieve the highest recall, 

demonstrating strong sensitivity in capturing relevant features. Xception V1 (0.894) and 

DenseNet169 (0.886) also show robust performance, indicating effective representation 

learning. In contrast, ResNet50 (0.771) records the lowest recall, suggesting a higher rate 

of missed detections. Classical architectures such as VGG16 (0.8294) and VGG19 (0.8616) 

deliver moderate recall values, reflecting stable but less optimized sensitivity. Notably, the 

proposed model achieves a recall of 0.987, significantly outperforming all baseline 

networks, which confirms its superior capability to detect positive instances with minimal 

false negatives. 

 

 

Figure 2: Recall Comparison of Different Feature Extraction Networks. 
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Figure 3 compares the specificity performance of different feature extraction 

networks, reflecting their ability to correctly identify negative cases. Among the baseline 

models, ResNet50 achieves the highest specificity value of 0.249, indicating a stronger 

capability to reduce false positives compared with other networks. AlexNet (0.191) and 

ResNet50 V2 (0.166) also show relatively better specificity, while architectures such as 

VGG16 (0.1561), Inception V3 (0.159), and DenseNet201 (0.152) demonstrate moderate 

performance. Lightweight models, particularly MobileNet (0.089), exhibit lower 

specificity, suggesting a higher tendency to misclassify negative samples. Notably, the 

proposed model records a very low specificity of 0.004, which indicates that it is highly 

biased toward identifying positive cases. This behavior aligns with its exceptionally high 

recall, emphasizing sensitivity over specificity and making it more suitable for applications 

where minimizing missed detections is prioritized over false alarms. 

 

 

Figure 3: Networks for Feature Extraction: Comparison of Specificity. 

 

According to Figure 4, different feature extraction networks perform differently in 

terms of accuracy. VGG16 achieves the highest accuracy of 0.8281, indicating strong overall 

classification capability among the evaluated models. ResNet50 (0.6735) also performs 

relatively well, benefiting from residual learning that supports stable feature 

representation. Most other deep architectures, including AlexNet, Inception V3, and 

ResNet50 V2, attain moderate accuracy values around 0.59–0.60, reflecting balanced but 

less optimal performance. Lightweight and densely connected models such as MobileNet, 

DenseNet121, and DenseNet169 show comparatively lower accuracy, suggesting 

limitations in capturing discriminative global features for this task. The proposed model 

records an accuracy of 0.4628, which is lower than the baseline networks; however, this 

outcome is consistent with its design emphasis on maximizing recall, indicating a 

deliberate trade-off where sensitivity is prioritized over overall accuracy. 



 244 
 

  
Central Asian Journal of Theoretical and Applied Science 2026, 7(1), 235-246  https://cajotas.centralasianstudies.org/index.php/CAJOTAS 

 

Figure 4: Accuracy Comparison of Different Feature Extraction Networks. 

 

5. Conclusion 

In this study, a blockchain-federated deep learning framework was developed to 

detect COVID-19 from chest CT images. A multi-hospital diagnostic model can be jointly 

developed by integrating federated learning, blockchain infrastructure, and homomorphic 

encryption. A capsule-based ensemble architecture improves feature extraction and 

classification by capturing spatial relationships within medical images effectively. Based 

on experimental results, the proposed model achieves notably higher recall than 

conventional deep learning methods, which emphasizes its ability to reduce missed 

detections of COVID-19. Despite a trade-off between sensitivity and specificity, this 

approach aligns well with clinical screening requirements that require reliable 

identification early in the process. The proposed framework offers a scalable, privacy-

preserving, and trustworthy framework for collaborative medical diagnosis, as well as 

providing a solid foundation for future intelligent healthcare systems that depend on 

secure inter institutional cooperation. 
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