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Abstract: Secure, reliable, scalable communication of private data is a necessity for IoMT devices 

used in industrial healthcare. Classical centralized architectures are not able to cope with such 

demands due to their inadequacy on privacy, data integrity, scalability, and cyber security. In this 

context, a decentralized industrial healthcare data sharing scheme built on permissioned 

blockchains is offered to alleviate the above challenges. Using smart contracts in permissioned 

blockchains, the framework guarantees controlled access, tamper resistance of data storage and 

trusted information kindles transference. Moreover, Support Vector Machines (SVM) was adopted 

to use with the LSTM network for data analytics, behavior modeling and enhanced attack detection. 

In order to guarantees patient privacy, homomorphic encryption is embedded in order to process 

encrypted healthcare data in the cloud. Experiments demonstrate that the proposed approach can 

be more accurate, robust, and scalable than other deep learning and machine learning methods, 

which could provide an intelligent method to learn useful representation of industrial healthcare 

data for future work. 
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Internet of Medical Things (IoMT). 

1. Introduction 

An Internet of Things (IoT) based smart grid, smart network, smart city and 

healthcare system are among the applications and services that can be supported by the 

IoT [1]. Under the support provided by IoT technology, through realizing location barrier-

free and automating manufacturing process, remote monitoring and real-time data 

communication facilitated superior performance to traditional industries [2]. Several types 

of physiological data can be recorded with IIoT in the current health system, such as blood 

pressure levels, electrocardiograms and temperatures [3]. Health care providers often 

aggregate and process industrial healthcare data, then send it to the cloud for long-term 

storage, or use it to diagnose and analyze patients in real time [4]. Currently, healthcare 

ecosystems are characterized by insecure devices and sensors transmitting, exchanging, 
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and monitoring data continuously [5]. As a result of round-the-clock connectivity, 

healthcare systems are vulnerable to a wide range of security threats, such as data 

manipulation, denial-of-service attacks, eavesdropping, and impersonation [6]. Health 

care professionals may be exposed to the risk of incorrect diagnoses caused by data 

manipulation [7]. 

In addition, the current industrial healthcare system faces major privacy and data 

integrity challenges. Two types of data privacy attacks exist: active data privacy attacks 

(ADPAs) and passive data privacy attacks (PDPAs) [8]. A DPA attack alters, modifies or 

infers private information from two communicating entities (as when data poisoning 

occurs) [9]. During this type of attack, real-time modifications are made to patient health 

data. It is also possible to negatively impact AI-based data analytics and intrusion 

detection systems (IDSs) [10]. Blockchain technology is immutable and decentralized, and 

would be an interesting technology for a cryptocurrency such as Bitcoin. The trust on data 

is maintained by the use of a ledger, dispersed and decentralized. A blockchain can 

securely store data, retain audit trails with access controls, and manage access finely using 

smart contracts, cryptography and consensus mechanisms. Privacy, security and 

interoperability problems can be solved via blockchain. EHRs, health data-including 

images-and sensitive information should be shared with the patient's permission. Being 

decentralized in underlying nature, blockchain requires no intermediaries; generating 

higher efficiency at lower cost and forcing data to be more accessible. Because of medical 

challenges, for technological perspective three significant issues are present in healthcare: 

(1) data interoperability; (2) scalability and (3) security [11]. Excuses such as data sharing, 

information security and meaningful collaboration all apply to standard healthcare 

systems. With the advent of new technologies such as DL and BC, healthcare revolution 

is in the offing [12]. BC technology is commonly used for development of cryptocurrencies 

due to its attributes including immutability and decentralization 

 

2. Related Work 

 Health care is one of the sectors where blockchain technology shows great promise. 

In addition to being distributed and immutable, it addresses data integrity, 

interoperability, and security concerns. Due to the large amount of data generated by 

healthcare applications, blockchain technology presents a challenge. Author proposes a 

hybrid deep learning system which enables to achieve scalability and security of 

healthcare data management with blockchain technique. Blockchain can remedy 

healthcare using deep learning. The new study demonstrates that deep learning models 

can preprocess the blockchain-based healthcare without difficulty and securely [13]. 

Applications of blockchain to distributed systems: A survey [14]. It also provides deeper 

understanding about block chain’s secure, privacy inside the framework reaching towards 

implementation. Deep learning was also suggested in the study as a way to improve 

performance and scalability. In addition, the study identifies blockchain-based healthcare 

platforms that employ hybrid deep learning algorithms for analyzing and securing data. 

In 2020, blockchain-based privacy and security enhancements will be introduced for 

healthcare data. [15]. Detecting anomalies and encrypting data can be improved utilizing 

deep learning models. Blockchain technology, a technology that is immutable, and deep 

learning, which is a technology that anticipates, are used in healthcare data security. In the 

author [16] proposed a scheme for offloading data. A Markov Decision Process (MDP) is 

used to formulate the most challenging problem, which is then solved using DRL policy 

search. As well as BC security audits, offloading decisions, computing resource 

distributions, and radio communication bandwidth, other factors are also taken into 

account. A novel DL-based secure BC (ODLSB) was presented by authors [17] to aid 

intelligent IoT and healthcare diagnosis. Medical images can be shared confidentially 

using the orthogonal OPSO technique. A disease detection algorithm was created using 
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the optimum DNN (ODNN). In PBDL, permission BC and smart contracts are combined 

with DL methods, according to the author [18]. By utilizing PBDL's smart contract-based 

consensus model, transmission entities can be validated, registered, and verified using 

zero-knowledge proof. DL and BC-based architectures are used to construct a secured 

platform in [19]. An optimization algorithm called Bonobo is used to develop a BC 

leveraging technique that is optimal. Moreover, Feistel architecture is incorporated in the 

model to increase privacy protection. In addition, the intrusion is identified and prevented 

using a DRL technique. 

Using BC entities (BC-i Health) for cost reduction and security enhancement, the 

authors propose an intelligent healthcare system [20]. Deep Q-learning was used to resolve 

the optimizer method as a MDP. A new BC-based system for medical diagnosis and 

transmission of data with DL-assisted medical data transmission is presented. By using 

the moth flame optimizer with ECC (MFOECC), the optimal key is generated for ECC. The 

use of SHA-256 hashing techniques in blockchain can be inefficient against malware and 

benign attacks when used in heterogeneous ICPS workflows. Although SHA-256-based 

deep learning models for blockchain technology are not malware-proof, they are optimal 

for workflows. A blockchain-enabled ICPS powered by LSTM and reinforcement learning 

is presented in this study for healthcare services in heterogeneous fog network networks. 

The study concludes that blockchain technology introduces a new pattern of hashing that 

prevents malware and cyber-attacks most effectively. In this study, the Markovian decision 

process was used to divide the scheduling problem into multiple states [21]. 

 

3. Proposed Methodology 

During the experiments, steps have been taken to obtain the output of the system in 

accordance with the proposed methodology [22]. As part of step 1, IoT data is collected 

and sent to the cluster head using sensors. Step 2 involves transferring data through the 

blockchain. Following data encryption, homomorphic encryption is used, and then cloud 

computing is used. Data that is encrypted can be used for statistics and deep learning when 

homomorphic encryption is combined [23]. We extract key features from heart rates, ages, 

genders, weights, and heights. Feature-based and interaction-based classification is 

proposed using SVM. A validation model is then used to verify and validate the output 

[24]. 

3.1 Proposed Algorithms 

In IoMT, sensors and medical devices are used to collect information about patients, 

medical equipment, and the environment. A variety of medical devices can be found in 

this category, including wearables, implants, monitoring devices, and more. Physiological, 

behavioral, and environmental data are captured, transmitted, analyzed, and used for 

further decision-making within IoMT systems by sensing. As well as vital signs and 

medication adherence, sensors can also monitor activity and the environment. It isn't 

widely recognized that distributed QEMR algorithms can be incorporated into IoMT. 

3.2 Mathematical Model 

Here is how the mathematical model looks: 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛:
𝑚𝑎𝑥3𝑥1 + 5𝑥2

𝑥1, 𝑥2
 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  2𝑥1 + 4𝑥2 ≤ 10
                  𝑥1 + 3𝑥2 ≤ 7

           𝑥1, 𝑥2 ≥ 0
 

An optimization problem can be formulated for the mathematical model: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒:  max ∑ ∑ 𝐷𝑖𝑗 . 𝐵𝑖𝑗             

𝑗∈𝐽

    

𝑖∈𝑆

                                                 (1) 
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𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝑈𝑖𝑗 ≤ 𝑀, ∀𝑖 ∈ 𝑆

𝑗∈𝐽

                                                                       (2) 

𝑈𝑖𝑗 = 𝐷𝑖𝑗 . 𝐵𝑖𝑗 , ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐽                                                                  (3) 

𝐵𝑖𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝐽                                                                        (4) 

3.2.1 Proposed Framework 

Blockchain-enabled healthcare systems can benefit from hybrid deep learning 

techniques. By integrating these technologies, healthcare data can be managed and 

analyzed efficiently while still maintaining its integrity and privacy [25]. 

• Blockchain Infrastructure: The framework utilizes blockchain infrastructure to 

record medical data on a decentralized immutable ledger. Nodes keep and 

validate the double spending blocks. Blockchains can be employed to store 

medical history, diagnoses and treatments traceable and tamper proof. 

• Permissions Blockchain-Based Framework: Blockchain technology allows for 

permission-based control and security of health data. Smart contracts are used to 

enable access to and sharing of information between healthcare participants. A 

granular access control system allows patients to manage access to their medical 

records in a confidential manner [26]. 

• Hybrid Deep Learning Models: To analyze healthcare data, deep learning and 

blockchain technology are combined. Convolutional neural networks (CNNs), 

recurrent neural networks (RNNs), and generative adversarial networks (GANs) 

have been developed to diagnose diseases, predict outcomes, and detect 

abnormalities [27]. 

• Secure Model Training and Sharing: Following the framework, privacy 

preserving deep learning models are trained and shared. This mode of raw data" 

not-shared and shared model training based on decentralization is referred to as 

federation. Various privacy methods are available to secure private information 

in model learning phase. 

• Scalable Data Processing: Using this framework, scalability challenges in 

healthcare systems can be addressed by processing and analyzing distributed 

data. By using multiple deep learning models on a distributed blockchain 

network, large volumes of healthcare data can be processed and analyzed 

efficiently. Despite expanding volumes of data and computational demands, the 

system remains scalable due to its distributed approach  [28]. 

• Security Measures: In order to protect against a variety of threats and attacks, a 

number of security measures have been included in the proposed framework. 

Data transmission and storage are protected by encryption, participants' 

identities are verified by authentication, and security risks are identified and 

mitigated by anomaly detection algorithms. Additionally, proof-of-stake and 

proof-of-work cryptographic mechanisms can be integrated into the framework 

to enhance consensus. 

By combining deep learning and blockchain technology, healthcare becomes more 

scalable and secure. Furthermore, it enables secure, auditable, and powerful analytics 

powered by deep learning. Besides enabling secure, auditable data storage and sharing, it 

also provides deep learning-based analytical capabilities. 

Various IoT devices can be handled by automated systems with a high level of 

reliability. Managing and distributing IoT devices that are large requires automation and 

control expertise. As part of the hybrid deep learning approach, SVM and LSTM are both 

used. A model trained with IoT data is also stored in LSTM and records the IoT massive 

data set. LSTMs are designed to predict user behavior as well as attack chances inside the 

network.  
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Users can also classify data using support vector machines (SVMs). As part of the 

proposed model, IoT sensor data is hashed on blockchain nodes and then cloud-hosted 

after homomorphic encryption. Smart contracts can be divided into two types: Local smart 

contracts [29] and Global smart contracts. Additionally, a local smart contract governs the 

organization's local domain. Using smart contracts governs global interactions with the 

system, making the proposed approach cross-domain and scalable. There are irregular 

gaps between consecutive time steps in LSTM, which is handled by the forget gate. LSTM 

networks are aggregated with time-decaying pooling strategies to predict the future. By 

using EHRs, LSTMs, and neural networks, we propose an end-to-end DaaS framework to 

memorize and predict long-term illness. 

Admissions to any 𝑖𝑡ℎpatient are sequence 𝑆 = (𝑆𝐷1, 𝑆𝐷2 , . . . , 𝑆𝐷𝑛) for EHR records 

𝐷 = (𝐷1, 𝐷2 , . . . , 𝐷𝑛). In admission 𝑆𝐷𝑖 , the diagnosis codes (𝐶1, 𝐶2 , . . . , 𝐶𝑛), are represented 

by a feature vector ∈𝑖∈ 𝑅𝑚  where m indicates the length of the vector. Accordingly, Δ𝑡 

indicates the period between previous admissions and current admissions. Every 

𝑖𝑡ℎpatient, designated by Δ𝑝𝑖, has a similar time-sequence recorded. Each patient's LSTM 

feature vector set looks like this: 

𝐹𝐿𝑆𝑇𝑀
𝑖 = {𝑥𝑐𝑖

, 𝑥𝐼𝑖
, Δ𝑃𝑖 , 𝑚𝑖}                                                           (5) 

The LSTM calculates corresponding sequences of distributed illness states 

𝜚1, 𝜚2, … , 𝜚𝑛 where 𝜚𝑖𝜖𝑅𝑘, in this case, K is the vector dimension length. Adding these states 

to the middle layer is achieved by the multi-state weighted pooling function 𝑊𝑃𝑜𝑜𝑙 

(𝜚1, 𝜚2, … , 𝜚𝑛 ) for n scales. Based on these pooled states, the top layer computes outcome 

probabilities as follows: 

𝑃(𝑦|𝜚1,2,…,𝑛) = 𝑃(𝐿𝑆𝑇𝑀(𝑊𝑃𝑜𝑜𝑙))                                                   (6) 

Based on outputs and record structures, 𝑃(𝑦|𝜚1,2,…,𝑛) is determined. It is possible to 

have a binary or multiclass record structure. A patient's diagnosis code D must fall 

between the ranges of 1 and |𝐷|, and the intervention code F must fall between the ranges 

of 1 and |𝐹|. As indicated by the embedding matrix size 𝑛 × 𝑘, it is the row element located 

at the 𝐵 ∈ 𝑅𝑀×|𝐹| column of the 𝑖𝑡ℎ column for the admission of a diagnosis, which is 

described as: 𝑑1, 𝑑2, … , 𝑑𝑛 ∈ {1𝑡𝑜|𝐷|}. Intervention vectors have been designated as 

𝐵𝑠
𝐼1  , 𝐵𝑠

𝐼2 , . . . ;  𝐵𝑠
𝐼𝑘 in the matrix, while embedded vectors have been designated as 

𝐴𝑑1 , 𝐴𝑑2 , … , 𝐴𝑑𝑛 . Following is the maximum pooling definition: [30]. 

𝑥𝑡
𝑖 = 𝑚𝑎𝑥{𝐴𝑑1 , 𝐴𝑑2 , … , 𝐴𝑑𝑛}                                                         (7) 

𝑝𝑡
𝑖 = 𝑚𝑎𝑥{𝐵𝑠

𝐼1 , 𝐵𝑠
𝐼2 , . . . ;  𝐵𝑠

𝐼𝑘}                                                        (8) 

Normalized sum pooling can be described as follows [30]. 

𝜂𝑡
𝑖 =

𝐴𝑑1 + 𝐴𝑑2 + ⋯ + 𝐴𝑑𝑛

√𝐴𝑑1 + 𝐴𝑑2 + ⋯ + 𝐴𝑑𝑛
 

𝜔𝑡
𝑖 =

𝐵𝑠
𝐼1 + 𝐵𝑠

𝐼2+ . . . + 𝐵𝑠
𝐼𝑘

√𝐵𝑠
𝐼1 + 𝐵𝑠

𝐼2+ . . . + 𝐵𝑠
𝐼𝑘

                                                        (9) 

 LSTM input gate i controls the memory update of the Norm Pool. A candidate for 

admission into the LSTM network [30] is a person who meets the following criteria: 

𝐴𝑡 =
1,

𝑚𝑡

𝜎(𝑤𝑖𝑥𝑖 + 𝑈𝑡ℎ𝑡−1 + 𝑏𝑖) 

𝑀𝑡 = {
1, 𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑢𝑛𝑖𝑡𝐴𝑡 > 0
0, 𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑢𝑛𝑖𝑡𝐴𝑡 < 0

}                                             (10) 

A gate output is shown as 𝑜𝑡, and a weight matrix intervention is shown as 𝑝𝑜. Here 

are the equations that moderate output gate and illness forgetting  [30]. 

𝑜𝑡 = 𝜎(𝑤𝑜𝑥𝑡 + 𝑢𝑜ℎ𝑡−1 + 𝑝𝑜𝑝𝑡 + 𝑏𝑜) 

𝑓𝑡 = 𝜎(𝑤𝑓𝑥𝑡 + 𝑢𝑓ℎ𝑡−1 + 𝑝𝑓𝑝𝑡−1 + 𝑏𝑓)                                             (11) 

𝑓𝑡 ← 𝑑(∆𝑡−1:𝑡𝑓𝑡), 𝑊ℎ𝑒𝑟𝑒∆𝑡−1:𝑡= |log (𝑒 + ∆𝑡−1:𝑡)−1| 
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ℵ𝑖 = 𝜎(𝑤𝑓𝑥𝑡 + 𝑢𝑓ℎ𝑡−1 + 𝑄𝑓𝑞∆𝑡−1:𝑡
+ 𝑝𝑓𝑝𝑡−1 + 𝑏𝑓)                                 (12) 

In an LSTM network, ℵ𝑖 represents the parametric projection. Using a softmax 

function 𝑡𝑚𝑎𝑥(𝑧) =
𝑒𝑧

∑ 𝑒𝑧𝑡
𝑧𝑡

, hidden illness state ℎ𝑡 is now replaced with diagnosis code 𝑑𝑡+1 

for each discrete time step t. The n inputs, HPool is defined as ℎ1,2,…,𝑛and has the following 

equation: 

ℎ1,2,…,𝑛 =
1

𝑠 + 1
∑ ℎ𝑡    

𝑛

0=1

                                                        (13) 

A single hidden layer is now used to feed the LSTM network's output to the neural 

network. LSTM is used to predict future diseases by stacking illness predictions. The one 

layer stack auto encoder is used to denoise these illness predictions to predict future 

diseases. 

𝑒ℎ = 𝜎(ℎ𝑡 + 𝑛ℎ) 

𝑥𝑦 = ℎ𝑡𝑎𝑛 + 𝑏𝑦 

𝑃(𝑦\ℎ1,2,…,𝑛) = 𝑓𝑝𝑟𝑜𝑏(𝑥𝑦)                                                          (14) 

3.3 Proof of Concept (POC) 

A permission-based blockchain system for healthcare can be used to validate and 

evaluate a hybrid deep learning model. Data-driven decision-making was demonstrated 

by using PoCs in healthcare scalability, security, and healthcare scalability [31]. Data 

storage and access control based on blockchains, along with real-time data analysis based 

on deep learning, were used in the POC. Regulatory authorities, healthcare providers, and 

patients were represented in the network. Access to and modification of health information 

could be controlled by enforcing permission-based access control mechanisms through 

smart contracts. Data sharing can be facilitated efficiently by using zero-knowledge proofs 

while maintaining patient confidentiality [32]. Modeling mathematically and designing 

security protocols follow the following phases. Using an IoT system requires the user to 

go through a number of phases before reading or sending data. 

Phase 1: System Setup: During setup, various parameters are initialized, including 

those related to creating signatures and authenticating users. Below is an explanation of 

each phase: 

The setup (a) is as follows: Input security parameters (a) 

𝑙𝑒𝑡 (𝐺1) 𝑎𝑛𝑑 (𝐺2) 𝑏𝑒 𝑡𝑤𝑜 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒                                       (15) 

𝐴𝑠𝑠𝑢𝑚𝑒 (𝑔1), (𝑔2) 𝑎𝑟𝑒 𝑡𝑤𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 (𝐺1).                                 (16) 

3.4 Encryption 

Message M is the plaintext message, while cipher text C is the encrypted message. 

During encryption, E, a homomorphic encryption algorithm, comes together with K, an 

encryption key. The mathematical representation of cryptography is as follows: 

𝐶 = 𝐸(𝑀, 𝐾)                                                                  (17) 

Using C as the cipher text, homomorphic encryption algorithm E generates a 

ciphertext M based on plaintext M and an encryption key K. 

3.5 Decryption 

In decryption, plaintext messages are recovered from cipher text by reversing the 

encryption. The decrypted plaintext 𝑀′and the cipher text C are shown below. It is 

important to note that a decryption algorithm (D) and a decryption key 𝐾′ are part of the 

decryption process [38]. The mathematical representation of decryption is as follows: 

𝑀′ = 𝐷(𝐶, 𝐾′)                                                               (18) 



 230 
 

  
Central Asian Journal of Theoretical and Applied Science 2026, 7(1), 224-234.         https://cajotas.centralasianstudies.org/index.php/CAJOTAS 

After taking the cipher text C and decryption key 𝐾′ into account, the plaintext 

message 𝑀′ is produced using a decryption algorithm D. An equation defines block 

creation time and height as variables X1 and X2 [33]. 

 

4. Result and Discussion 

When the training process is further enlarged, so is model accuracy (Figure 1). The 

network is noised in the first five epochs due to very low training and validation accuracy, 

meaning that it has not yet learnt relevant patterns. There is also a large performance 

improvement at 10 epochs, with training accuracy increased to 0.65 and validation 

accuracy at.85 that shows effective learning and good generalization. The model reaches 

its best and most robust performance at 15 epochs, with matching training and validation 

accuracies (0.90-90) indicating an adequate absence of overfitting in this case. Further, 

small changes are seen at epochs 20 and 25, but validation accuracy tends to decrease 

slightly, so overfitting is taking place. Overall, these results identify 15 epochs as the. 

Overall, these results highlight 15 epochs as the most suitable training duration, offering 

the best balance between accuracy and generalization. 

 

 

Figure 1: Training and Validation Accuracy across Epochs. 

 

Training and validation losses fluctuate over training epochs as depicted in Figure 

2. Both the training (9.23) and validation loss (9.02) are high at 5 epochs, indicating that 

convergence has not yet been reached for this model. There is a significant decrease by 

the 10-th epoch, where the training and validation loss become 8.93 and 8.94 respectively, 

indicative of very quick learning and good model fitting. The loss values tend to converge 

from 15 epochs and beyond with only minor upgrades, setting at 8.91 (for training) and 

8.92 (for validation) at the 25 epochs. The training and test losses are quite similar for later 

epochs, I am sure the converging is stable and it generalizes well (without overfitting). 
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Figure 2: Training and Validation Loss across Epochs. 

 

To compare the class‐wise detection performance of various methods under different 

attack types, Figure 3 is presented. RF and DT reach very high precision on multiple 

classes, but make crucial mistakes, in particular on [MITM] and [Injection], which suggests 

that the detection capability is too weak. NB has a high variance in performance with low 

accuracy against more complicated attacks such as DDoS and XSS. BiLSTM consistently 

yields high and well-balanced accuracies over all classes suggesting to learn attack 

patterns well. Models Further the Proposed Model provides superior performance being 

almost perfect for all categories of attack hence it demonstrates robustness and a higher 

generalization. 

 

 

Figure 3: Class-Wise Detection Accuracy Comparison Across Different Techniques. 

 

Comparison of the global accuracy of various classification methods is shown in 

Figure 4. CART's accuracy is only 77%, showing that the method is ineffective for complex 

patterns. CNN, XGBoost and RF shows high accuracies (>98%), illustrating the reliable 

learning and classification ability. It can be seen that the Proposed Model achieves higher 

accuracy in comparison with all baseline models, even reaches 99.89%; thus the ability to 

make prediction and its robustness are well tested. 
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Figure 4: Accuracy Comparison of Different Classification Approaches. 

 

5. Conclusion 

We employed the permissioned blockchains and deep learning to construct an 

efficient, scalable, secure data sharing system in industrial health care. Smart contracts 

combined with blockchain technology guarantee the integrity of data, transparency, as 

well as fine-grained access control and thus streamline dependence on centralised 

solutions. The combination of these deep learning models, particularly LSTM and SVM, 

contributes to significantly improving intelligent data analytics, security monitoring 

(intrusion detection) as well as user behavior modeling in the IoMT. The operations of 

homomorphic encryption privacy also secure confidentiality on encoded healthcare data. 

The experimental results show that the proposed method achieves superior performance 

than state-of-the-art machine learning and deep learning based techniques. Enabling 

secure healthcare data management, the framework is also reliable, intelligent and 

scalable for industrial healthcare systems. Future work will focus on the reduction of 

computational overhead and extension of our framework to facilitate cross-domain 

compatibility as well as real-time federated learning. 
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