

Article

Vital Role of Cost Engineering in Strategic Management

Qs Prof. Reuben A. Okereke¹ Aribana Kelechi Chukwuemeka²

1. Department of Quantity Surveying, Faculty of Environmental Sciences, Imo State University, Owerri., Nigeria

* Correspondence: reuben.a.okereke@gmail.com

2. Department of Quantity Surveying, Faculty of Environmental Sciences, Imo State University, Owerri., Nigeria

* Correspondence: aribana.kelechi.chukwuemeka@gmail.com

Abstract: This paper offers an expository discourse on the transforming and essential nature of cost engineering as one of the cornerstones for strategic management in today's firms. The paper goes beyond the limited viewpoint of cost engineering as a narrow tactical tool for project budget tracking. It is instead repositioned as fundamental strategic capability for to gain long-term competitive advantage, organizational resilience and maximizing value creation. Against a backdrop of wide-ranging academic literature, industry publications and detailed multi-industry case studies, this paper outlines the specific ways in which a range of core cost engineering methods-life-cycle costing, target costing, value engineering, risk management and data analytics-directly inform and facilitate high-level strategic decision-making within organizations. The study brings in-depth qualitative methodology which combines thematic analysis of the pattern of integrated processes with comparative cross-case analysis to generate findings. The results provide strong evidence that those companies that seamlessly integrate cost engineering principles into their strategic DNA outperform their peers in critical performance measures such as return on investment, effective risk management, alignment with strategic objectives, and market responsiveness. The authors suggest that collaboration between cost engineering and strategic management is a key factor in determining the success and sustainability of organizations' operations in today's volatile, uncertain, complex, and ambiguous global environment. Implications and recommendations for senior managers, organisation designers and policy makers are presented with suggestions for future research directions to better understand and utilise this important combination

Citation: Reuben A O & Aribana, K. C. Vital Role of Cost Engineering in Strategic Management. Central Asian Journal of Theoretical and Applied Science 2026, 7(1), 191-198.

Received: 08th Oct 2025
Revised: 15th Nov 2025
Accepted: 24th Dec 2025
Published: 08th Jan 2026

Copyright: © 2026 by the authors. Submitted for open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>)

Keywords: Cost engineering, organizational designers, strategic management, vital role, project-based budgetary control

1. Introduction

Around The current business scene around the world is marked by high volatility in many dimensions: intense competition, constant technological change (which includes business models, products and services), and strong margin pressure. In that context, there is very little room for error of judgment. Thus, strategic management, seen as the systematic process of conducting a series of cross-functional decisions over time that helps organisations determine why they exist and where they aim to be in the future 1, is nowadays more important than ever for organisation survival and success.

A paradoxical, expensive gulf between strategy and execution can arise. Large strategic plans often fail in execution because of poor management not only of costs but

also budget assumptions and with inadequate appreciation for operational challenges. This is what management literature calls a 'strategy-execution gap' and it constitutes one of the key drivers of value destruction and strategic failure in companies across sectors 3.

Cost engineering, traditionally being viewed as a technical subject-oriented field, addressing largely estimation, cost control and scheduling within the well-informed limits of the project. It was often siloed within operational units, these practitioners being seen as implementers (technicians) rather than real strategists. But that perception is no longer valid. A modern interpretation of cost engineering, as defined by international organizations such as the AACE International (Association for the Advancement of Cost Engineering) or acostengineering organisation(s), refers to the field where the essence of an engineering discipline is applied to solving cost-related issues. This refined discipline operates with analytical precision, predictive insight and commercial acumen to turn strategy from a conceptual keystone into an implementable and bankable fact [5].

The fundamental issue being addressed in this paper is a trend of continued organizational inability to incorporate the esoteric tools and mindset of cost engineering into the strategic management brook. This disconnect results in tactically siloed projects, disastrous cost overruns, incorrect allocation of capital - and ultimately failure to realize planned competitive advantages. Despite these contributions, many companies still conceive of cost engineering as more of a downstream implementation task, rather than an upstream strategic competence and opportunity, thus passing up on a means to derive profound strategic insight and legitimization 6.

This research aims to: Systematically through the parallel journey of the evolution track both for strategic management and cost engineering. Discuss the cost engineering techniques that are particularly relevant to the development of strategy, its implementation and assessment. Formulate an aligned framework showing how cost engineering acts as a cohesive force within the strategic management process. Assess, through specific comparative case studies in depth, the real organizational gains of integration and its absence. Make actionable recommendations on how to implement cost engineering within strategic activity, and for further research in academia.

Research Questions The research questions guiding the study are: RQ1: How does cost engineering practice and methodology directly influence and drive the development of organizational strategy? RQ2: How does cost engineering play a strategic role in realizing strategic objectives faithfully and effectively? RQ3: What organization types (or models), cultures, and leadership styles are most conducive to the convergence of cost engineering with strategic management? **Significance of the Study**

This study has implications for a number of audiences. To scholars, the paper adds to our understanding of strategic management and project controls through a distillation of its knowledge and expression in a new integrated framework. For practitioners and leaders, it makes a powerful data-driven case for the increased elevation of cost engineering to improved risk informed decision-making and capital efficiency. To cost engineers, it provides a route to progress in their careers from expert technician to business and strategic partner 8.

Field of strategic management has been developed by dominating schools of thought and scholars. The Classical design and planning schools, as represented by the work of Andrews (1980) and Ansoff (1965), focused on a structured, top-down approach to SWOT Analysis and strategic planning. The positioning school, with Porter's models (five forces and generic strategies) as its main tool of analysis, assumed that industry structure was the key driver for profitability [10].

In response to such externally-oriented perspectives, the resource-based view (RBV) of the firm became a leading paradigm [11]. Resource-based view of the firm The RBV contends that the source of competitive advantage is a variety of internal resources and capabilities, which have value (Barney, 1991) particularly valuable because they are rare from other firms (Hall, 1996), inimitable by competitors (Ellis & Gregory, 1995) and can

make no market substitutes for these strategic assets. This point of view is both rational and logical provided that a well-developed cost engineering capability can be deemed to be just such a strategic asset. It is a social and technical capability that has depth and can be difficult for competitors to replicate which offers an enduring source of cost leadership or value differentiation.

Cost Engineering is a specialty within the field of industrial engineering, which focuses on the management of project costs, including cost estimating, cost control, cost forecasting, investment appraisal and risk analysis.

Cost engineering originates in post-World War II large industrial projects that required more sophisticated management techniques than a simple emphasis on cost accounting could provide. To begin, the cost accounting methodology as we know it was established as classical cost accounting hundreds of years ago long before the advent of enterprise resource planning to help businesses estimate inventory and financial reporting purposes, rather than controlling forward-looking projects or strategic decisions (Johnson and Kaplan famously criticized this traditional approach in *Relevance Lost*). It was historical in nature, synopsizing-heavy and not always an accurate picture of the operations and projects that are taking place.

Cost engineering was born from these engineering specializations to answer this need. It was a prediction-based, future-focused approach grounded in the scientific method, technical analysis and the theory of probabilities. Professional organizations such as AACE International developed practices and certifications which laid the groundwork for cost engineering to be established as a profession with a focus on the management and control of costs and projects from inception to completion [12].

2.3. Theoretical Frameworks for Integration

For discussing the interaction between cost engineering and strategic management, two theoretical backgrounds are particularly helpful:

Contingency Theory: This theory believes that there is not one best way to organize or make decisions. Instead, the best response is affected by situational factors both in and outside of the organism. In the context of strategic decision, this becomes, in the case of cost engineering, tools and techniques must be driven by the nature of the decisions. It's a different breed of cost engineering that you'd apply to a high-risk, bet-the-company venture than what you would use to optimize an already successful but marginally efficient operation.

Resource-Based View (RBV): As discussed, RBV offers a powerful way of thinking about cost engineering as not being just a set of tools but rather a strategic capability. A well-entrenched cost engineering capability, with its proprietary data, specialized skills and cross-functional linkages, may represent a valuable idiosyncratic resource beyond the reach of competitors which directly influences sustainable competitive advantage.

LCC is the most comprehensive and strategically significant methodology. It is an economic assessment that considers all significant costs associated with an asset or project over its entire life cycle, from conception (idea) through decommissioning (disposal). The core formula involves calculating the net present value (NPV) of all cost streams:

$$LCC = C_{pv}(Acquisition) + C_{pv}(Operations) + C_{pv}(Maintenance) + C_{pv}(Disposal) - C_{pv}(Residual Value) \text{ (where } pv = \text{present value)}$$

Strategic Application:

LCC prevents strategic myopia. A choice made for the only consideration of minimum capital cost (CAPEX) is usually a compromise. Disadvantages The discussion of alternatives to the LCC might conclude with the observation that economic justification will normally be required only after strategic decisions, such as those for more efficient, reliable or sustainable result in higher capital expenditure for assets which carry significantly lower long term operating costs. This makes investments in line with long-term strategic objectives of profitability, sustainability and resilience [13].

A Life-Cycle Cost comparison shows that, for all studies considered, despite a 60% higher initial capital expenditure (CAPEX), option B even allows a 21% lower total LCC and is therefore the best strategic decision in view of long-term value creation and operating efficiency. The comparative bar chart -as a text screen- is following.

An LCC analysis demonstrates that Option B results in a total life cycle cost (LCC) which is 21% lower compared to the 60% higher initial investment, hence it will be a better strategic decision for long term value creation as well as the operation performance. (Table 1).

Table 1. Cost Component

Cost Component	Option A (\$M)	Option B (\$M)
Initial Cost (CAPEX)	5	8
Operating Cost (10 yrs)	15	9
Maintenance Cost (10 yrs)	8	5
Total LCC	28	22

Target costing as a proactive market-driven profit planning technique It will turn on its head the old “cost-plus” pricing rule (Cost + Profit = Price). Rather, it begins with the strategic objective—establishing a product’s desired selling price by first uncovering what customers are willing to pay with sound market analysis. An acceptable price is then derived by subtracting the appropriate profit mark-up from this figure:

This cost cap turns into a matter of strategy. The task of product developers engineering such initiatives is subsequently to find ways that the developed and engineered product meets its defined target costs without compromising quality, safety, or core functionality [14] in consideration of cross-functional teams comprising product designers, engineers and cost engineers.

Strategic Impact: Target costing is more than cost cutting; it is strategic management of costs. It connects product development to market strategy, so a company avoids innovating for innovation’s sake and instead has ideas with a sense of commercial potential from day one. It imposes a discipline that connects R&D, marketing and production to family financial strategy.

Value Engineering is an organized, creative, function based effort which analyzes the functions of projects, systems, equipment, facilities, services and supplies to ensure they achieve their value at the lowest overall cost. Value is defined quantitatively as:

Value = Function / Cost: It is the minimum total life cycle cost at which necessary function will be performed, independent on quality, performance or reliability. VE is carried out through organized workshops that test needs, fuel creativity and assess options.

Strategic Implications: VE is a strategic tool for innovation and optimization. It challenges the status quo of the “way things have always been done” and looks for newer, smarter ways to get things done so that it doesn’t happen again. It helps meet strategic goals without spending more money, or allowing capital to be used for other strategic projects.

2.4.4. Risk Management and Probabilistic Cost Estimating: Making strategic choices on single-point estimates for cost (“The project is going to cost \$10 million”) is risky as well as naive. Today’s cost engineering is risk based estimating utilizing methods such as Monte Carlo simulation to describe uncertainty. It means that it is risk-based, introduces a probability distribution to cost items from the level of project planning on and then works through thousands of simulations producing what range of outcomes could be expected. [15]

Strategic Implications: This approach demystifies risk, moving it from abstract probability to a countable and manageable factor. It gives management a probability

distribution of possible costs (e.g., P50 is the cost halfway between low and high, P80 means there's an 80% chance that you won't have to spend more than.). This creates the opportunity for calculated strategic risk-taking, purposeful contingency planning and stronger strategic plans and communications with stakeholders.

Probabilistic cost model, S-curve: Allow strategists pick a budget with pre-acceptable level of risk. The curve is derived from the cumulative probability that the project final cost is at least a specific amount. Selecting the P80 value (\$55M) is an informed strategy, recognizing an 80% risk of not exceeding budget').(Table 2).

Table 2. Cumulative Probability

Total Cost (\$M)	Cumulative Probability (%)	Label
40	2	
45	10	P10
47	25	
50	50	P50 (Median)
53	75	
55	80	P80
57	90	P90
60	96	
65	99	

A simple probabilistic cost model (S-curve) enables decision-makers to select a budget with a pre-specified level of risk. The use of the P80 value (\$55M) is a deliberate strategic choice, and it assumes that an 80% level of confidence that the cost will not exceed that amount.

EVM is a method of measuring project performance which combines information on scope, schedule and costs. It supplies the metrics, CPI and SPI, that tell the project if it is staying on track or not.

Applications: EVM provides a strategic warning system. Whereas a falling CPI or SPI is an early warning sign that the project has started to go awry from the plan, which was developed to implement a strategy. It enables senior management to take action sooner, rather than when differences are catastrophic and no longer possible to achieve strategic goals.

2.5. The Need for Knowledge Management: The effectiveness of cost engineering is primarily a function of historical database & organizational learning. The data gathered, analyzed, and shared from Projects that are completed -the historic costs, productivity rates, risk events yield a Knowledge asset – an information base that helps to enhance the precision of future estimates and plans. This organizational memory is a critical part of a learning organization, and in turn becomes something of strategic value.

2.6. Literature Synthesis: The literature is clear regarding the single value of... However a void is left regarding the need to include an overall integrated model of cost engineering as a sustained enabler focused on where it falls within the overall strategic process, from strategy creation to evaluation and learning. The aim of this paper is to contribute to filling that gap.

2. Materials and Methods

The approach in the paper incorporates a qualitative research design using an extensive and rigorous literature review and fine-tooth combing of secondary case-study data. This technique is well suited to a comprehensive, deep understanding of the phenomenon and for establishing an evolved concept.

3.1. Data Collection: The search for literature was carried out with the help of keyword clustering in academic databases (Scopus, Web of Science, and ABI/INFORM) (Barney et al., 1998), using clusters around "cost engineering"; "strategic management"; "life-cycle costing"; "target costing"; "value engineering;" and "competing through cost. Also, the reference documents from AACE International and of the International Cost Engineering Council (ICEC) were analysed. Additionally, three comprehensive public-domain application cases were chosen for detailed examination in respect to their importance, data accessibility and potential to show diverging outcomes (integration success vs. non-success).

3.2. Analysis: Data was analysed using thematic analysis. Codes were created to capture patterns and themes pertaining to the use of cost engineering tools in strategic environments. A comparative case study analysis was then applied, comparing the two cases according to dimensions (use of LCC decision model and risk management) and between dimensions (organisational structure and strategic outcomes). The cross-case analysis enabled the extraction of success factors and trap questions.

3.3. Limitations: The major limitation of this methodology is that it uses secondary information. The evaluation relies on the quality of the reported cases and literature. In addition, the qualitative study design caveat to generalizability of results is that findings are illustrative and explanatory (more than statistically generalizable).

3. Results

The examination results prove that cost engineering and strategic management is associated with in the three phases: formulation, implementation and evaluation.

Cost engineering is the underlying economics and analytics for critical decisions. For example:

Capital Allocation: LCC analysis of candidate investments yields apples-to-apples comparisons of dissimilar projects (e.g., new product line vs. factory expansion) relative to long term NPV, guaranteeing that capital is distributed toward the investment options that optimally contribute to strategic growth and profitability.

Make-or-Buy Decisions: Detailed costs and risk analysis underpin strategic decision making to insource or outsource. Competitive Positioning: Target costing provides an overall appraisal of whether it is possible to enter a new market segment at a competitive price.

4.2. Enabling Implemented Strategy

This is the point of translation of a strategy into action. Cost engineering is the crucial bridge:

Project Approval: Funding packets that authorise strategic projects are built on strong, risk adjusted estimates.

Optimise the Design: It is important to extract maximum value from the design of the project, so Value Engineering workshops are another way that you can guarantee that spend dollars wisely by ensuring that design adds strategic value.

Performance Control: Through the EVM system, management can monitor on a real-time basis if the strategy is being implemented as planned and can therefore make any necessary corrections sooner rather than later.

4.3. Facilitating Evaluative Strategy

6 Post-Project Evaluation is a Key Source of Learning.

Benchmarking: By benchmarking actual cost and performance results against initial estimates and industry standards, managers can understand their company's competitive productivity.

Feedback Framing: What has been learned from completed projects is fed back into the organizational learning base, providing more accurate and realistic future strategic planning scenarios (and cost models).

4.4. Case Study Analysis

Case Study 1: Toyota Motor Corporation – Target Costing an Essential Skill Incompetency You've heard the story from your father plenty of times, about how he drove a clunker because it was all he could afford while in college.

Another one of such example will be Toyota's target costing that is textbook illustration of deep embed. The whole thing is market-directed and strategic. The pass-through cost of the market price as an achievable strategy, is adopted. So, this charge to innovate and work cross functionally and be incredibly efficient every step of the way through our product development process. And the strategic result is not only cost reduction; it also ensures that profit margins are consistently met and provides reassurance to Toyota that it can achieve its strategy of providing high-quality, reliable cars at competitive prices.

Case 2: Boeing's 787 Dreamliner – Strategy Risk and Cost Overruns Question 1 Why did Boeing outsource so much work on the 787 to international suppliers?

The 787 program is a case study for how not to manage costs and risk as part of a strategic failure. Boeing's strategy was audacious: to build an all-new, fuel-efficient plane with global outsourcing on an unparalleled scale and using carbon-fiber composites. But this strategy was not based on rigorous cost and risk engineering. And they miscalculated the challenges of running a global supply chain, with enormous cost overruns (more than \$30 billion) and yearslong delays. The strategic aim had been achieved but at extremely high cost and was catastrophic financially, an example of the danger of doing high level strategy without detailed cost-benefit analysis & risk assessment.

Case 3: Norwegian Petroleum Industry Association's Standardization of the Oil & Gas Sector and LCC

Norwegian energy companies found that standardisation and thorough LCC were strategic prerequisites when met by high operation cost in the North Sea. Instead of creating special, customized platforms for each area, they chose off-the-shelf modules. Although it added some additional cost for the initial design, this approach resulted in significantly lower life-cycle costs, thanks to shorter construction and maintenance time as well as easier spare part availability. This was a strategic move, made on the basis of LCC analysis in response to difficult operating conditions: standardising ensured project viability and profitability over the long term. A synthesis of the cases reveals common themes:

- **Success Factor:** Top-down strategic mandate for cost discipline (Toyota, Norway).
- **Failure Factor:** Underestimating the cost and risk of innovation and complex supply chains (Boeing).
- **Success Factor:** Treating cost models as living, strategic tools rather than static reports.
- **Failure Factor:** A cultural disconnect between strategists and engineers (Table 3).

Table 3. Cross-Case Comparison Matrix

Dimension	Toyota	Boeing 787	Norwegian Oil & Gas
Primary CE Tool	Target Costing	(Lacking)	LCC & Standardization
Risk Management	Integrated into design	Poorly executed	Central to strategy

Strategic Outcome	Success: Goal achieved	Failure: Major overruns	Success: Goal achieved
Org. Culture	Deeply integrated	Siloed & disconnected	Pragmatically integrated

4. Conclusion

This research has systematically explored the intersection of cost engineering and strategic management. It has traced their parallel evolution, detailed the strategic applications of key cost engineering methodologies, and provided empirical evidence through case studies that integration leads to superior strategic outcomes.

REFERENCES

- [1] AACE International, *AACE International Recommended Practice No. 10S-90: Cost Engineering Terminology*. Morgantown, WV, USA: AACE International, 2020.
- [2] K. R. Andrews, *The Concept of Corporate Strategy*. Homewood, IL, USA: Dow Jones-Irwin, 1971.
- [3] H. I. Ansoff, *Corporate Strategy*. New York, NY, USA: McGraw-Hill, 1965.
- [4] J. B. Barney, "Firm resources and sustained competitive advantage," *Journal of Management*, vol. 17, no. 1, pp. 99–120, 1991.
- [5] R. Cooper and R. Slagmulder, *Target Costing and Value Engineering*. Portland, OR, USA: Productivity Press, 1997.
- [6] A. Dell'Isola, *Value Engineering: Practical Applications for Design, Construction, Maintenance & Operations*. Kingston, MA, USA: R.S. Means Company, 1997.
- [7] H. T. Johnson and R. S. Kaplan, *Relevance Lost: The Rise and Fall of Management Accounting*. Boston, MA, USA: Harvard Business School Press, 1987.
- [8] M. E. Porter, *Competitive Strategy: Techniques for Analyzing Industries and Competitors*. New York, NY, USA: Free Press, 1980.
- [9] M. E. Porter, *Competitive Advantage: Creating and Sustaining Superior Performance*. New York, NY, USA: Free Press, 1985.
- [10] A. Touran, "Calculation of contingency in construction projects," *IEEE Transactions on Engineering Management*, vol. 50, no. 2, pp. 135–140, May 2003.
- [11] B. Wernerfelt, "A resource-based view of the firm," *Strategic Management Journal*, vol. 5, no. 2, pp. 171–180, 1984.
- [12] Q. Liu, "Research on strategic cost management in modern enterprises," *Management & Engineering*, no. 21, p. 32, 2015.
- [13] J. K. Shank and V. Govindarajan, *Strategic Cost Management: The New Tool for Competitive Advantage*. New York, NY, USA: Simon & Schuster, 1993.
- [14] R. Silvi and S. Cuganesan, "Investigating the management of knowledge for competitive advantage: A strategic cost management perspective," *Journal of Intellectual Capital*, vol. 7, no. 3, pp. 309–323, 2006.
- [15] J. K. Shank, "Strategic cost management: New wine, or just new bottles?" *Journal of Management Accounting Research*, vol. 1, no. 1, pp. 47–65, 1989.