



Article

## Some Properties of Helmholtz Equation to Solving Finite Element Method

Qasim Abd Ali Tayyeh

1. Department of Mechanical Techniques, Al-Nasiriya Technical Institute, Southern Technical ,University, Thi-Qar, Al-Nasiriya 64001, Iraq

\*Correspondence: [qassim.tayih@stu.edu.iq](mailto:qassim.tayih@stu.edu.iq)

**Abstract:** A homogeneous limited component demonstrate is analyzed for its capability to compute time-harmonic acoustic waves in outside spaces utilizing limited component strategies. A diffusing examination highlights the affect of work refinement on the discrete representation of limited component characteristics. Within the Helmholtz space, parameter alterations are utilized nearby ordinary steady limited components to upgrade in general execution. Numerical prove affirms the vigor of the Flawlessly Coordinated Layer (PML) limited component strategy. Besides, we present an effective strategy for fathoming the Helmholtz condition in bounded locales with spatially changing wave speed. The center concept of this approach is wave part. To iteratively illuminate the Helmholtz condition beneath a given excitation, the condition is to begin with deteriorated into one-way wave conditions. Usage of the source terms requires both the wave speed work and the already gotten one-way wave arrangements. The surmised arrangement to the Helmholtz condition is at that point built by summing the one-way arrangements at each cycle, coming about in a noteworthy diminishment in computational fetched.

**Keywords:** Helmholtz Condition, Limited Component Strategy, wave condition, physical applications, scattering problems, frequency domain.

**Citation:** Tayyeh, Q. A. A. Some Properties of Helmholtz Equation to Solving Finite Element Method. Central Asian Journal of Theoretical and Applied Science 2025, 6(4), 772-779

Received: 10<sup>th</sup> Jun 2025  
Revised: 16<sup>th</sup> Jul 2025  
Accepted: 24<sup>th</sup> Aug 2025  
Published: 23<sup>th</sup> Sept 2025



Copyright: © 2025 by the authors. Submitted for open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>)

### 1. Introduction

The Impeccably Coordinated Layer (PML) may be a commonly An fake absorption layer is actualized to complement the computational space in calculating Maxwell's conditions utilizing the limited component strategy (FEM) or limited distinction. to recreate an unbounded locale time space (FDTD) strategies. In comparison to, the PML ordinary retention Considering the ease, versatility, and effortlessness of boundary conditions (ABCs) adequacy. Its key benefits are that it can be set to be conformal which its internal border can be put greatly near to sources. In expansion to retaining waves that are occurrence on the PML locale and dodging wrong reflections into from the truncation border the PML region's insides, this diminishes the sum of white space within the computational space.

For the FDTD approach of fathoming Maxwell's conditions, Berenger [1] to begin with put forward the PML concept. Since it isolates electromagnetic waves areas show inside the part the PML locale into two non-Maxwellian areas, Berenger's PML is additionally known as the split-field PML. Gedney [2] has created a unused PML detailing for the FDTD known as the uniaxial PML, in which the PML could be a manufactured anisotropic medium. Chew and Weedon [3] at first proposed the stretched-coordinate PML, a more careful approach, for the FDTD. Within the PML range, non-Maxwellian areas are delivered as a result of a troublesome arrange change.

Afterward, in [4], Sachs and colleagues proposed an elective approach to PML for limited component modeling. They did this by making a heterogeneous layer with a virtual matter tensor of the PML lesson Maxwellian characterized by a difficult harmony development. At first created by Kozoglu and Mitra in [5], [6], and afterward by Teixeira and Chiu in [7]. This approach was initially created in Cartesian facilitates and afterward expanded to round and hollow and round systems through the utilize of locally bended arrange systems. At first presented within the 1990s to unravel Maxwell's conditions for electromagnetic wave proliferation, the Impeccably Coordinated Layer (PML) strategy has since been effectively connected over different spaces, counting acoustics, elastodynamics, and the linearized frame of Euler's conditions.

In differentiate to the past approach, the strategy displayed in this paper utilizes a variational arrange change to decide the vanishing work. This component is additionally coordinates into the limited component strategy (FEM) code. The analysts presented a novel definition in which the Jacobian lattices are computed specifically, maintaining a strategic distance from complex components and implanting the facilitate change impacts inside the FEM system. This method is alluded to as LCPML-log, where "log" shows the utilize of a logarithmic vanishing work. The key advantage of LCPML-log is that it requires a little number of PML layers (e.g., 1 to 3) to supply dependable comes about.

Boundary esteem issues within the Helmholtz condition

$$\Delta v + K^2 v = g$$

emerge in numerous real-world applications [8], particularly in wave diffusing and fluid-solid contact issues. for where the wave number is  $k$ .

The discrete numerical Helmholtz condition solutions' quality is enormously affected by the physical parameter  $\sigma$ . For a limited component or limited work, the step width  $h$  The truth that distinction computations must be balanced for the wavenumber  $k$  is well-known and apparent. Really, the taking after "run the show of thumb" is ordinarily followed to  $k = \text{const}$ .

## 2. Materials and Methods

Comes about created by this run the show are precise sufficient for most wavenumber computations. Be that as it may, when wavenumber  $k$  develops, the numerical comes about ended up less exact. Subsequently, Bayliss et al. state that piecewise direct FEM must be utilized to fathom the two-dimensional Helmholtz issue.,  $L^2$ - standard The comes about It is appeared that the mistakes compound when is kept consistent. In any case, the mistakes can be controlled by keeping up the relationship . Reference presents a merging hypothesis based on this suspicion that  $k^2 h$  is enough little. As a result of this hypothesis, it is illustrated that for the relative mistakes are for certain information classes  $O((Kh)^2)$  in  $H^1$  –and  $O(K(Kh)^{p+1})$  in  $L^2$ -norm, where  $p$  indicates the polynomial's arrange guess.

Non-reflecting confined de Richelt conditions for the low-dimensional wave condition - peculiarity of presence is built up in this segment. We look at the occurrences  $n \in H^2(0,1)$  and  $n \in H^1(0,1)$  autonomously and illustrate that the two occurrences have different soundness necessities. Both proofs depend on how the problem's Green's work is built.

The Boundary Esteem Issue

Let  $v \in (0,1)$  and let  $\bar{v}$  the issue of boundary values  $Lv = -g$  by given

$$v''(y) + K^2 v(y) = -g(y)$$

$$v(0) = 0$$

$$v'(y) - iKv(1) = 0$$

Appears The relationship between , the stretch within the acoustic medium, and , the wave number at that time.

On the off chance that you'd like it as portion of a full sentence (e.g., for scholarly composing), here's a total adaptation:

This relationship depicts the interaction between , representing the push within the acoustic medium, and , the wave number at that given minute.:

$$K = \frac{wl}{c}$$

Case: Discover arrangements to The second-order Helmholtz condition is fathomed utilizing MATLAB.

Or, on the off chance that you need the strategy:

A MATLAB-based usage is utilized to unravel the second-order Helmholtz condition. $v''(y) - \nabla \cdot \nabla v = 0$

The Helmholtz condition was unraveled utilizing MATLAB R2021, utilizing the built-in look work to get the arrangement. The standard shape of the Helmholtz condition was utilized with the coefficients set as: and . The arrangement is computed inside a square space, characterized utilizing the square geometry work . A show consolidating this geometry was made, and the boundary names were surveyed amid the geometry development handle, see Figure 1.

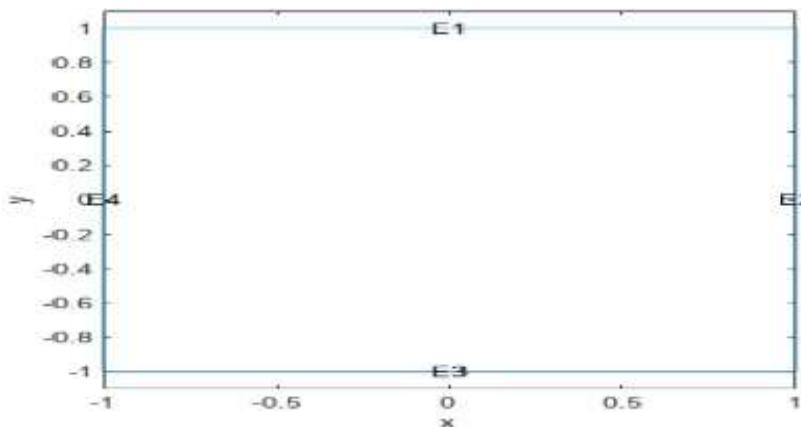



Figure 1. utilize MATLAB to plot edge Discover FEM coefficients.

Four-term boundary imperatives and Neumann zero-term constraints. Set up and illustrate the limited component strategy for the issue, see Figure 2.

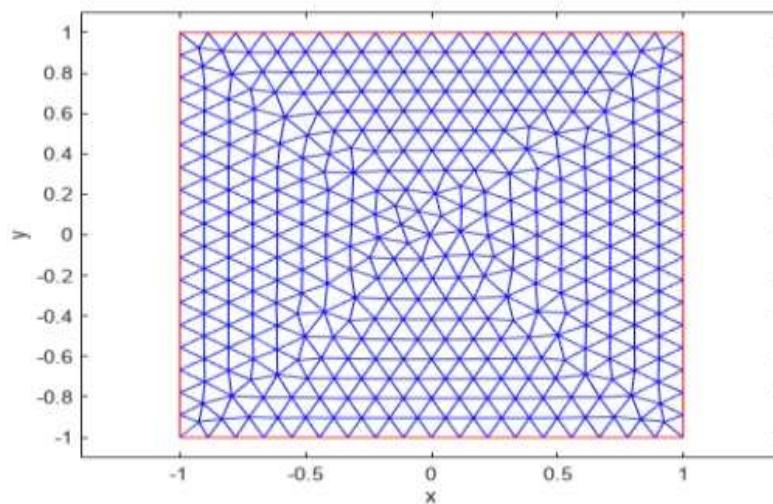



Figure 2. MATLAB code to plot boundary conditions

#### Deriving the Strategy in One Measurement

#### Ponder the One-Dimensional Helmholtz Condition

$$v_{yy} + \frac{w^2}{c(y)^2} v = wg \quad y \in [-a, a]$$

where  $(m_y) \subset (-a, a)$  and  $m(y)$  The recurrence, as a result, depends on the wave speed. The condition is refined with the taking after boundary conditions:

$$\begin{aligned} K_y(-a) - irK(-a) &= -2irB \\ K_y(a) + irK(a) &= 0 \end{aligned}$$

Here, speaks to the approaching plenitude of the wave. At tall frequencies, Geometrical Optics (GO) gives a great guess of the arrangement. In any case, we are creating a strategy to compensate for the blunders it presents at lower frequencies. Whereas the WKB framework of conditions would be a consistent choice, it comes up short to meet indeed beneath straightforward conditions, advertising as it were an asymptotic arrangement. One of its key impediments is that it accounts for wave engendering in as it were a single course. In scenarios where , genuine wave reflections happen. Hence, we develop an ansatz that incorporates two engendering bearings.

$$irv + c(y)v_x - \frac{1}{2}m_y(y)v = g$$

$$irv - c(y)v_y - \frac{1}{2}m_y(y)v = g$$

Where  $z = r + v$  at that point it fulfills the taking after condition:

$$m^2 z_{yy} + r^2 z = -irg + \alpha(y) z$$

Where:

$$\alpha(y) = \frac{1}{2}mm_{yy} - \frac{1}{4}m^2_y$$

Presently, we increment the powers of  $v$  and  $w$ .

$$V = \sum_a r_a r^{-a} \quad W = \sum_a s_a r^{-a}$$

From above equation:

$$\sum_a (irr_a + c(x) \partial_y r_a - \frac{1}{2}m_y(y)r_a - \frac{\alpha(y)}{2i}(r_{a-1} + s_{a-1})r^{-a}) = 0$$

$$\sum_a (irr_a + m(y) \partial_y s_a - \frac{1}{2}m_y(y)s_a - \frac{\alpha(y)}{2i}(r_{a-1} + s_{a-1})m^{-a}) = 0$$

Define  $v_a = r_a w^{-a}$  and  $w_a = s_a w^{-a}$  then get

$$irr_a - c(y) \partial_y r_a + \frac{1}{2}m(y)r_a = \frac{1}{2ir}g_a(y)$$

### 3. Results and Discussion

In this segment, we show the numerical arrangement of the Helmholtz condition utilizing the limited component strategy executed in MATLAB. This condition is broadly utilized in different electrical designing applications, permitting engineers to analyze frameworks with variable parameters [9].

Explanatory and Numerical of A limited component for Helmholtz

The Helmholtz issue is fathomed employing a unearthly component solver created in MATLAB. This program computes the component firmness and mass networks and utilizes isometric quadrilateral and rectangular component clusters to supply steady arrangements for dissemination and Helmholtz conditions [10]. Analysts are required to define and approve a unused set of Helmholtz conditions custom-made to address a particular electrical issue. Upon point by point examination, critical varieties in thickness and speed were watched over distinctive models.

For the test, a scaled demonstrate was outlined with fine components, covering a flat length of 10 km and a profundity of 2 km [11]. Spatial varieties stay steady in spite of the rescaling. The lattice determination is set to 5 meters in both bearings. To assess the execution of our FEM-based approach, two sorts of coarser networks were too produced for comparison.: Network 1 contains  $nz \times nx = 20 \times 100$  coarse components and a framework measure of 100 m; Lattice 2 contains 40,200 coarse components ( $nz \times nx = 40 \times 200$ ) and is 50 m wide. The source is found at a profundity of 0.2km and a level remove of 5 km, see Figure 3.

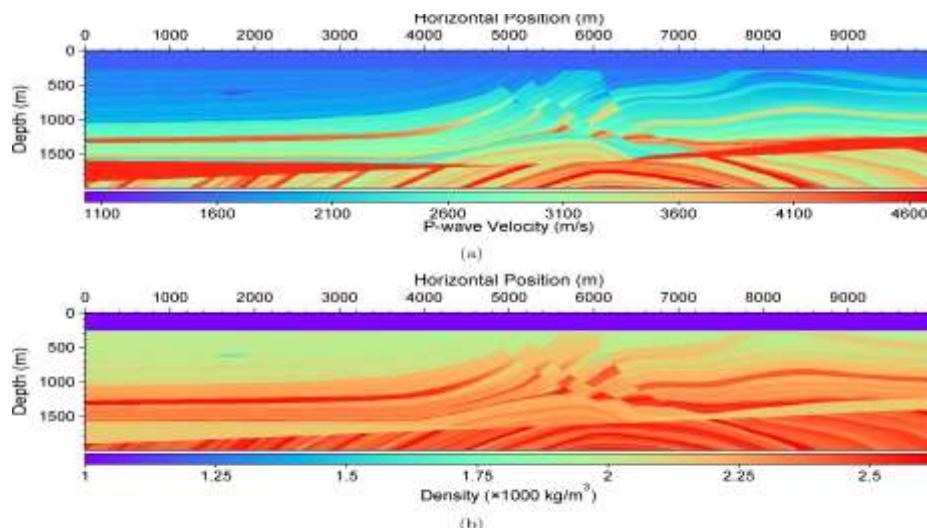



Figure 3. Electric issue demonstrate in MATLAB

Discover Moment differential condition by Helmholtz condition in FEM Helmholtz issues with homogeneous or heterogeneous Dirichlet and Neumann boundary conditions are illuminated employing a consistent dissemination administrator, which compares to the rectangular component firmness network for a single component. To address consistent dissemination issues in spaces composed of different components, worldwide solidness frameworks are gathered by combining person component firmness lattices. Outstandingly, understanding the Helmholtz condition requires as it were one rectangular component [12], [13]. The equations for assessing the Helmholtz administrator are displayed and connected utilizing the rectangular component system. The comes about are outlined through form plots and 3D visualizations. This ponder centers on the Helmholtz condition with Dirichlet boundary conditions and  $\omega = 1$

$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + v = g \text{ on } \partial \Omega \in [-1,1] \times [-1,1]$$

$v = v_{exact}$  on  $\mu$

result within the correct arrangement of

$$v_{exact} = \sin(\pi x) \cos(\pi y)$$

With MATLAB R2021, look the result and plot the 2D arrangement

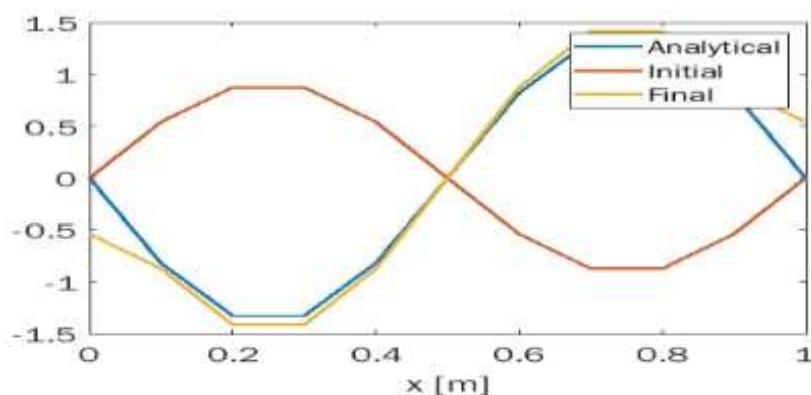



Figure 4. Moment differential of Helmholtz condition in 2D

to utilize the unravel pde work and the common FEM Show holder to resolve a Helmholtz condition. See Diffusing Issue for the electromagnetic workflow that utilizes the Electromagnetic Demonstrate and well-known domain-specific dialect. (Figure 4)

When talking about the results of this frame, we find the answers within the shape of a bend boundless and is the wrap up and the space of the results as a lama that has an conclusion and the significance of utilizing the Helmholtz condition [14], [15]. How to

unravel the dipole electric capacities in material science utilizing the Helmholtz condition and the FEM strategy

Discover the bends that a square question reflecting from occurrence bends coming from the cleared out in a clear scrambling circumstance Consider an unending flat film for this issue, with  $U$  moving it somewhat vertically. at the object's border, the layer is secured. The stage speed (engendering speed) of a wave, is steady in a homogeneous medium. It is the over wave conditions

To begin with, Start by building a limited component strategy (FEM) demonstrate with a single subordinate variable [16]. Utilize a modified approach to fathom the scrambling issue and after that decide the esteem of the coefficients. Taking after a facilitate change, the geometry grows, and constants are characterized inside the updated model. As you reach the ultimate steps, begin defining the pertinent equations. Plot the geometry and show the edge names, which can be utilized when applying boundary conditions.

Apply the suitable boundary conditions. Illuminate the Helmholtz condition to get a real-valued arrangement that closely approximates the complex plentifulness. The genuine portion of the arrangement vector stores this estimation. To imagine the time-dependent behavior, make an activity based on the wave condition, utilizing the arrangement of the Helmholtz condition as a reference [17].

To apply the central distinction conspire for the wave condition, a MATLAB program is created. The number of framework focuses in time and space are characterized by  $sl$  and  $sd$ , individually. If initial speed is utilized as an starting condition, signifies the correct endpoint of the spatial interim , and is the correct endpoint of, utilized as the boundary value---@where the speed at the boundary edges remains break even with.

The yield is spoken to by, with speaking to the worldly framework estimate, and the spatial network measure. A consistent is characterized, and. For each time step and space record, the overhaul conditions are connected.

Utilizing MATLAB R2021, the FEM show is built with one subordinate variable to address the dissemination issue. The work characterizing the geometry is indicated in detail, with and as coefficients that will change. For more data on parameter settings, allude to the "Parametric Work" area.

Let me know in the event that you'd like this broken into littler areas or adjusted for a particular setting (e.g., report, article, code documentation). for Making Two-Dimensional Geometry" segment of the documentation. Coefficients and Non-homogeneous Limits. The geometry must be changed and included to the show. To utilize it to characterize boundary conditions, draw the geometry and appear the edge names, see Figure 5

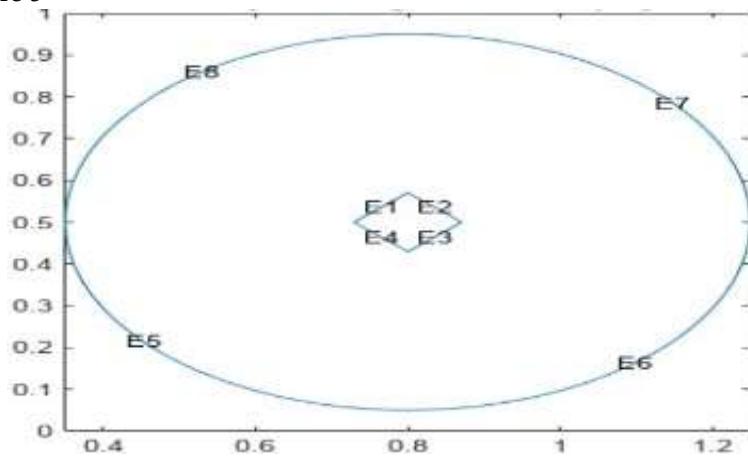



Figure 5. Plot edge of moment differential in 3D

Utilizing minimal conditions, decide the components and plan a organize. In this program, we looked for to form exceptionally little numbers inside the space and complex

numbers from all sides into a circle with important values, to extend the precision of the consider. The coming about plan is as takes after, see Figure 6.

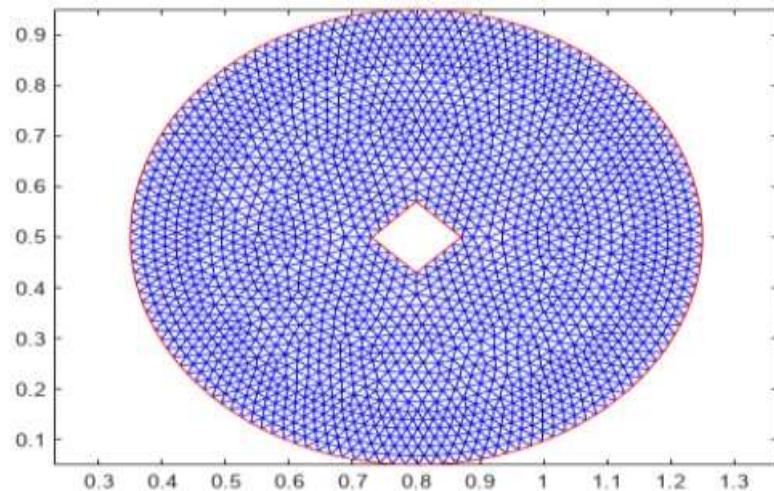



Figure 6. Plot the moment differential condition in 3D

The complex adequacy must be found. The genuine portion of the vector  $u$  contains an estimation to the genuine arrangement to the Helmholtz condition.

As a result of the past chart being blended up, the chart shows up to be the foremost comprehensive and exact for the interim, since the chart over employments as it were a subset of the numbers specified in, see Figure 7.

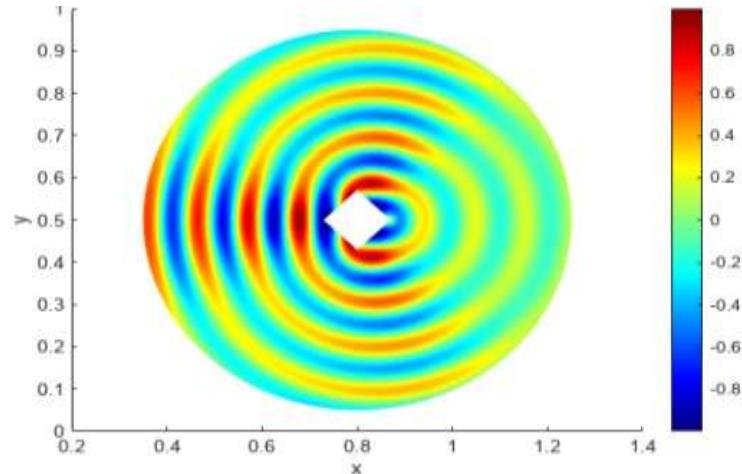



Figure 7. Plot the moment differential condition for numerous focuses in interi

#### 4. Conclusion

In this article, to begin with and moment arrange Helmholtz conditions are fathomed utilizing MATLAB R2021 program and the limited component strategy. By calculating the values of the moment subordinate and to begin with subordinate factors and after that depicting them with the going before visuals, the Helmholtz equation may be utilized to assess complex electrical circuits utilizing the comes about (1-3), (1-4), (1-5), (1-6) and (1-7) that were already said. In arrange to build a certain electrical circuit, the physicist must utilize subordinates. Composing a computer program that fittingly speaks to each result and recognizes the inquire about components is essential.

## REFERENCES

- [1] C. R. Che The, *Numerical Methods: Algorithm and MATLAB Programming*, Universiti Teknologi Malaysia: Ekskop Publisher, 2013, pp. 209–243.
- [2] W. Cheney and D. Kincaid, *Numerical Mathematics and Computing*, 6th ed. Belmont, CA: Thomson Brooks/Cole, 2008.
- [3] A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Invisibility and inverse problems,” *Bull. Amer. Math. Soc.*, vol. 46, pp. 55–97, 2009.
- [4] A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Full-wave invisibility of active devices at all frequencies,” *Commun. Math. Phys.*, vol. 275, pp. 749–789, 2007.
- [5] R. Kohn and M. Vogelius, “Identification of an unknown conductivity by means of measurements at the boundary,” *Inverse Problems, SIAM-AMS Proc.*, vol. 14, 1984.
- [6] R. V. Kohn, H. Shen, M. S. Vogelius, and M. I. Weinstein, “Cloaking via change of variables in electric impedance tomography,” *Inverse Problems*, vol. 24, no. 1, p. 015016, 2008
- [7] D. Schurig, J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” *Science*, vol. 314, pp. 977–980, 2006
- [8] S. Ambikasaran and E. Darve, “An  $O(n \log n)$  fast direct solver for partial hierarchically semi-separable matrices,” *J. Sci. Comput.*, vol. 57, no. 3, pp. 477–501, Dec. 2013
- [9] A. Aminfar, S. Ambikasaran, and E. Darve, “A fast block low-rank dense solver with applications to finite-element matrices,” *arXiv preprint*, arXiv:1403.5337 [cs.NA], 2015.
- [10] A. Aminfar and E. Darve, “A fast sparse solver for finite-element matrices,” *arXiv preprint*, arXiv:1410.2697 [cs.NA], 2014.
- [11] M. N. Ghayyib, A. I. F. Al-Rubaie, and F. A. Adnan, “A statistical analysis of the effects of afforestation on the environment in Iraq (North Iraq),” *IOP Conf. Ser.: Earth Environ. Sci.*, 2023.
- [12] O. Ozgun, M. Kuzuoglu, H. Beriot, and R. Mittra, “Parametrization-free locally-conformal perfectly matched layer method for finite element solution of Helmholtz equation,” *Comput. Phys. Commun.*, 2023.
- [13] F. Ihlenburg and I. Babuška, “Finite element solution of the Helmholtz equation with high wave number. Part I: The h-version of the FEM,” *Comput. Math. Appl.*, 1995.
- [14] T. A. Iraq, and M. N. Ghayyib, “Using sensitivity analysis in linear programming with practical physical applications,” *Iraqi J. Sci.*, vol. 65, no. 2, pp. 907–922, 2024. doi: 10.24996/ijss.2024.65.2.27.
- [15] M. N. Ghayyib, F. A. Adnan, A. A. Jawad, H. Q. Hamdi, and M. H. S. Abed, “Using mathematical time series models to optimize Iraq's oil export predictions,” *Exp. Theo. Nanotechnol.*, vol. 9, pp. 157–166, 2025
- [16] J. Li, X. Li, H. Liu, and Y. Wang, “Electromagnetic interior transmission eigenvalue problem for inhomogeneous media containing obstacles and its applications to near cloaking,” *arXiv preprint*, arXiv:1701.05301 [math.AP], 2017.
- [17] S. E. Kasenov, A. M. Tleulesova, A. E. Sarsenbayeva, and A. N. Temirbekov, “Numerical solution of the Cauchy problem for the Helmholtz equation using Nesterov's accelerated method,” *Mathematics*, vol. 12, no. 17, p. 2618, 2024. doi: 10.3390/math12172618.