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Abstract: This study addresses the analytical resolution of systems of ordinary differential 

equations (ODEs), which are foundational in modeling various dynamic processes across scientific 

fields. While numerous methods exist, a clear comparative framework for solving linear systems 

remains underexplored. This paper fills that gap by employing and contrasting three core 

techniques: the D-operator method, eigenvalue analysis, and integral transforms (especially 

Laplace). Each method is applied to illustrative examples, demonstrating their efficiency, 

limitations, and the conditions under which they yield general solutions. The results reveal that 

integral transforms, particularly Laplace, offer more streamlined solutions for linear systems with 

initial conditions, while eigenvalue methods excel in homogeneous cases. These findings provide 

valuable insights for selecting appropriate analytical tools in mathematical modeling and 

engineering applications. 
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1. Introduction 

     A differential equation is defined as an equation that includes derivatives of 

unknown functions concerning one or more variables. The primary purpose of a 

differential equation is to articulate the relationship between a function and its derivatives, 

and it finds extensive application across various scientific disciplines including physics, 

engineering, economics, and more.[1] 

The mathematical framework of differential equations consists of a collection of 

equations that delineate the relationships between mathematical functions and their 

derivatives in relation to independent variables. These equations are employed to model 

natural phenomena or processes that undergo changes over time or in response to other 

variables.[2] 

Accurate solutions to differential equations offer a means to ensure that mathematical 

models authentically represent reality, thereby facilitating more effective and precise 

applications across numerous fields.[3] 

2. Materials and Methods 

The method of such study is based on analytical mathematical means to solve systems 

of ordinary differential equations (ODEs). The research started with the general linear 

systems of first and higher order ODEs of both standard as well as matrix form. These 

formulations were then used as a basis for applying in turn, the D-operator method, the 
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eigenvalue method and a set of integral transforms. In the D-operator approach, 

differential equations were operated on in terms of operator notation, so as to have a 

systematic elimination of variables and to find characteristic equations involving arbitrary 

constants producing general solutions. In this method, the system was first converted to 

matrix form and then eigenvalues and associated eigenvectors were obtained in order to 

express general solution as a linear combination of fundamental solutions. Specifically, 

this method performed particularly well in treating homogeneous linear systems. The 

third technique involved the use of integral transforms in particular, the Laplace 

transform. This method transformed the differential system to algebraic system in the 

domain of Laplace, and solved it with algebraic method using partial fraction 

decomposition. In that case, the time domain solution was then obtained by applying the 

inverse Laplace transform. Carefully built examples were used to demonstrate each 

method and point out its procedural steps, when applicable, and its effectiveness. Their 

efficiency, solution uniqueness and practical relevance were compared across methods. 

Finally, it shows that the classical tools are still valid and offers a systematic methodology 

to determine what techniques will be best suited to study differential systems according 

to their nature and complexity. 

3. Results and Discussion 

The Formula of General System of Ordinary Differential Equation(SODE)  First  Order 

[4]. 

 Linear non-homogenous (SODE)of first-order has the form: 
Y1

′=𝒦11𝑌1(t) + 𝒦12Y2(t)+⋯+ 𝒦1nYn(t) + a1(t) 

Y2
′   =𝒦21Y1(t) + 𝒦22Y2(t)+⋯+ 𝒦2nYn(t) + a2(t) 

⋮                                ⋮                               ⋮ 

Yn
′   =𝒦n1Y1(t) + 𝒦n2Y2(t)+⋯+ 𝒦nnYn(t) + an(t), 

    or in a matrix form  

          Y′(t) = 𝒦Y(t) + a(t).                                            (1.1)                        

  Where 

        Y′(t) = 

(

  
 

dY1(t)

dt
dY2(t)

dt

⋮
dYn(t)

dt )

  
 

  , 𝒦 = (𝒦ij) = (

𝒦11 𝒦12 … 𝒦1n

𝒦21 𝒦22 … 𝒦2n

⋮ ⋮ … ⋮
𝒦n1 𝒦n2 … 𝒦nn

),      

   Y(t) = (

Y1(t)
Y2(t)

⋮
Yn(t)

) ,            a(t) =(

a1(t)
a2(t)

⋮
an(t)

)        

 

         If a(t) = 0, then the system (1.1) is called ahomogenous system. 

3. The General System of r-Order Formula was extended in n dimensions [5].  

A linear system of r-order in n-dimensional space is expressed as follows: 

                         Y1
(r)(t)=𝒦11Y1(t) + 𝒦12Y(t)+⋯+ 𝒦Yn(t) + a(t), 

                          Y2
(r)(t)=𝒦21Y1(t) + k22Y2(t)+⋯+ 𝒦2jYn(t) + a(t), 

                             ⋮                                ⋮                               ⋮ 

                         Yn
(r)

(t)=𝒦i1Y1(t) + 𝒦i2Y2(t)+⋯+ 𝒦ijYn(t) + an(t), 

Where 
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Y(r)(t) = 

(

 
 
 

drY1(t)

dtr

drY2(t)

dtr

⋮
drYn(t)

dtr )

 
 
 

  , 𝒦 = (𝒦ij) = (

𝒦11 𝒦12 … 𝒦1n

𝒦21 𝒦22 … 𝒦2n

⋮ ⋮ … ⋮
𝒦i1 𝒦i2 … 𝒦ij

),      

Y(t) = (

Y1(t)
Y2(t)

⋮
Yn(t)

) ,         a (t) =(

a1(t)
a2(t)

⋮
an(t)

)     , 

which can be stated as the following  formula:  

           

(

 
 
 

drY1(t)

dtr

drY2(t)

dtr

⋮
drYn(t)

dtr )

 
 
 

=

(

 

𝒦11 𝒦12 … 𝒦1j

𝒦21 𝒦22 … 𝒦2j

⋮ ⋮ … ⋮
𝒦 𝒦i2 … 𝒦ij)

 (

Y1(t)
Y2(t)

⋮
Yn(t)

)+(

a1(t)
a2(t)

⋮
a(t)

) ,             

 Yr(t) = 𝒦Y(t) + a(t).                                                                             (1.2) 

If a(t) ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  = 0, then the system(1. 2)called homogenous system. 

4. The, Techniques of Linear System Solving [6] 

The linear system can be resolved by numerous approaches as: 

4.1 The D, Method Operator 

 D( denotes the derivation, of a specific funct,ion with respect to the independent 

variable t). 

where:D =
d

dt
  ,  D2 =

d2

dt2
 , ⋯ ,  Dn =

dn

dtn
, with using elimination, variable, and 

simple 

The computation might provide the other dependent variables.  

Rem,ark 1 [8]: The quantity of arbitrary consta nts that may be present in the 

general solution of a linear system, such as: 

𝒦11(D)Y11 + 𝒦12(D)Y12 + ⋯+ 𝒦1n(D)Y1n = a1(t) , 

 𝒦21(D)Y21 + 𝒦22(D)Y22 + ⋯+ 𝒦2n(D)Y2n = a2(t), 

                                     ⋮                             ⋮                   ⋮ 

                                             𝒦m1(D)Ym1 + 𝒦m2(D)Y m2 + ⋯ ,𝒦mn(D)Ymn = an(t), 

where D, is an, operator which represents D =
d

dt
  ,  𝒦11(D)…𝒦mn(D) that are 

fu,nctions of D, t andcj  are functions of t , i = 1,2, … ,m and j = 1,2, …n depict 

dependent an,d  indep, endent var,iable in the sy,stem, respectively. 

 

They c,an be equival,ent to the degree of D i,n the determinant. 

 
                            𝒦11(D)       𝒦12(D)  …     𝒦1n(D) 

                               𝒦21(D)       𝒦22(D)   …    𝒦2n(D)    ≡ ∆ 

                                   ⋮                 ⋮                      ⋮ 
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                               𝒦m1(D)     𝒦m2(D)   …   𝒦mn(D) 

If ∆, ≡ 0,, then the solution set is dependent and outside the scope of o,ur analysis; 

hence, we ass,ume ∆ is non-ze,ro. 

Example : the system, resolving.   
Y1'(t) −2Y1(t)  +2Y2

′(t) = 2 − 4e2t                                                (1.3)                             

2Y1'(t)  −3Y1(t) + 3Y2
′(t) − Y2(t) = 0 

By the operator D method, 

re -write this system in the following  form: 

[(D − 2)Y1(t) + 2DY2(t) = 2 − 4e2t ](3D − 1) 

   [ (2D−3)Y1(t) + (3D − 1)Y2(t)=0] (-2D) 

We delete (t) get to, 

(𝐷2 + 𝐷 − 2) 𝑌1(𝑡) = −2 − 20𝑒2𝑡 

(m-1)(m+2)=0 →m=1,m=-2 

Y1c(t) = 𝒦1e
t  + 𝒦2e

−2t 

Y1p(t) = −1 + 5e2t 

Y1(t) = 𝒦1e
t  + 𝒦2e

−2t + 5e2t − 1 

[(D − 2)Y1(t) + 2DY2(t) = 2 − 4e2t ](2D − 3) 

 [ (2D−3)Y1(t) + (3D − 1)Y2(t)=0] (D-2) 

We delete   (t) get to, 

(D2 + D − 2) Y2(t)=-6-4e2t 

In the same way above we find. 

Y2(t)= 𝒦3e
t − 𝒦4e

−2t − e2t + 3 

From note (1), the number of consta nts in the general solution exceed the degree 

of D; so, we insert into (1.3) to obtain 

𝒦3 =
1

2
𝒦1     , 𝒦4 = −𝒦2 

Y1(t)= Y1e
t + Y2e

−2t + 5e2t − 1, 

Y2(t) =
1

2
𝒦1e

t − 𝒦2e
−2t − e2t + 3 . 

4.2 The Eigenvalue Approach 

Indices ƛ1 , ƛ2 , … , ƛn eig,en val,ues that are uniq,ue to the matr,i,x Y(t) where  these 

values sa,tisfy, the equation.    

                |Y − ƛI| = 0.                                                                          (1.4)          

Let b1
⃑⃑⃑⃑  ⃑,  b2

⃑⃑⃑⃑  ⃑, ⋯ ,  bn
⃑⃑ ⃑⃑  ⃑ are the eigen vectors achieved by th,ese values then the general 

solution of the system.  

 Y1(t) = eƛ1b1,    

Y2(t) =  eƛ2b2, 

         ⋮                  ⋮ 

Yn(t) = eƛnbn. 

the linear combination of these solution can be expressed as in the following: 

 𝒦(t) = 𝒦1e
ƛ1b1 + 𝒦2e

ƛ2b2 + ⋯ + 𝒦ne
ƛnbn.     
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𝒦1 , 𝒦,⋯ ,𝒦n are arbi,trary consta,nts. 

Example : To solve the system. 

Y1
′(t) = Y1(t) − Y2(t) − Y3(t)                                                     (1.5) 

 Y2
′(t) = Y2(t) + 3Y3(t) 

 Y3
′(t) = 3Y2(t) + Y3(t)  

By the eigen value method : 

we write this system in the form: 

                 (

Y1(t)

Y2(t)

Y3(t)
)

′

= (
1 −1 −1
0 1 3
0 3 1

)(

Y1(t)

Y2(t)

Y3(t)
) ,                                       

By formula (1.4 ) eigenvalues are the roots of the equation 

|
1 − ƛ −1 −1

0 1 − ƛ 3
0 3 1 − ƛ

| = (1 − ƛ)[(ƛ − 4)(ƛ + 2)] = 0, 

therefore, one solution is given by the eigenvalue is ƛ1 = 1  

(
0 −1 −1
0 0 3
0 3 0

)(

𝒦1

𝒦2

𝒦3

) = 0, 

-𝒦1 − 𝒦3 = 0 , 3𝒦3 = 0, 3𝒦2 = 0 

Y1(t) = Y1 (
1
0
0
) et, 

also, the second eigenval,ue ƛ2 = 4, gi,ves 

(
−3 −1 −1
0 −3 3
0 3 −3

)(

𝒦1

𝒦2

𝒦3

) = 0 

3𝒦1+𝒦2 + 𝒦3= 0  

       −𝒦2 + 𝒦3 = 0 →      𝒦2 = 𝒦3 

Y2(t) = 𝒦2 (
2

−3
−3

) e4t, 

finally, the last eigenvalue ƛ3 = -2, g,ets 

(
3 −1 −1
0 3 3
0 3 3

)(

𝒦1

𝒦2

𝒦3

) = 0 

Y3(t) = 𝒦3 (
0
1

−1
) e−2t, 

thus ,the general solution of system is : 

Y(t) = 𝒦1 (
1
0
0
) et+𝒦2 (

2
−3
−3

)e4t+𝒦3 (
0
1

−1
) e−2t, 

where 𝒦1, 𝒦2 and 𝒦3 are  arbitrary constants.  

4.3 Integral Transforms  Method 

The primary objective of the conversion process is to change the system's 

shape from differential to algebraic in order to streamline the solution method. 

While numerous transformations provide the same function, the Laplace 
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transform is particularly useful and efficient when working with linear systems 

[7]. Accordingly, we derived the mathematical system from it. Systems of 

ordinary differential equations are amenable to the well-known, precise, and 

efficient method of integral transformations. There are several integral 

transformations, including Laplace, Elzaki, Novel, and SEE transformations, 

among many more. [8] 

 

Definition [9] 

The Lapl,ace-Carson Transfo,rm of the real function Y(t), t > 0  is d,efined by:   

LC(Y(t)) = P∫ e−Pt Y(t)  dt
∞

0
,      P > 0                                                                                                                                                  

LC is the operator of  LCT. 

Example : To solve the system.     

Y1
′(t) − Y1(t) + Y2(t) + Y3(t) = 0                                                   (1.6) 

Y2
′ (t) −Y2(t)−3 Y3(t) = 0 

Y3
′(t) − 3Y2(t) − Y3(t) = 0 

Y1(0) = Y2(0) = Y3(0) = 1 

Solution: 

Us,ing form,ula (1.2) we have. 

     ∆= |

(P − 1) 1   1

0    (P − 1)  −3

0 −3 (P − 1)
  |   = (P − 1)[(P − 1)2 − 9] ,   

  

             = (P − 1)(P − 4)(P + 2)  ,  

 L(Y1(t)) =
1

(P−1)(P−4)(P+2)
|

1    1 1
1     (P − 1) −3

1    −3    (P − 1)
| , 

 L(Y1(t))    =
1

(P−1)(P+2)(P−4)
 ((P − 1)2 − 9) − (

(P−1)

P
+

3

P
) + (

−3

P
−

(P−1)

P
)], 

             =
1

(P−1)(P+2)(P−4)
[(P − 4)(P + 2) − (P + 2) − (P + 2)], 

             =
𝒫−6

(P−1)(P−4)
 ,  

using partition fractions 

L(Y1(t)) =
5

3

(P−1)
−

2

3

(P−4)
 , 

taking the inverse of Laplace transform for both sides of the above equation, to 

obtain: 

  Y1(t) =
5

3
et −

2

3
e4t 

In similar way, L(Y(t)) can be obtained by: 

L(Y2(t)) =
1

(P−1)(P−4)(P+2)
|
(P − 1)    1 1

0     1 −3
0    1    (P − 1)

| , 

              =
1

(P−1)(P−4)(P+2)
(P − 1)(P + 2) , 

            =
P+2

(P−4)(P+2)
 =

1

(P−4)
 ,          
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also, by the inverse of Laplace transform for the above equation,   

Y2(t) = e4t 

Also,L(Y3(t)) can be obtained by      

L(Y3(t)) =
1

(P−1)(P−4)(P+2)
|
(P − 1)    1      1  

0    (P − 1)  1
0   −3   1

|, 

   L(Y3(t))  =
1

(P−4)
 , 

the inverse of Laplace transformation for the above equation ,yields: 

Y3(t) = e4t. 

Y1(t), Y2(t) and Y3(t) represent the set solution of the system (1.6). 

Because the systems are defined  from the outset, the answer, that emerges from 

integral transformations is unique. 

4. Conclusion 

Consequently, this study systematically investigated how to solve systems of 

ordinary differential equations using analytical methods, including the D-operator, and 

eigenvalue, and integral transform approaches and. Each technique is found to be virtually 

practical for variable elimination in the first order systems, for having structured solutions 

for linear homogeneous systems, and a powerful tool to convert a differential equation 

into an algebraic form via integral transform, especially the Laplace transform. The 

comparison uncovers the fact that all three methods provide mathematically sound 

solution to the system even with the initial conditions, however, integral transforms are 

particularly advantageous for systems with initial conditions since they provide unique 

and exact solution. A number of insights from these examples feed into optimization of 

mathematical modeling across the scientific and engineering disciplines. The 

hybridization of these methods or application to non-linear and higher dimensional 

systems may further be pursued with the aim of increasing computational efficiency and 

expanding of practical applicability. 
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